The complex pathophysiology of bone fragility in obesity and type 2 diabetes mellitus: therapeutic targets to promote osteogenesis

Siresha Bathina, Reina Armamento-Villareal, Siresha Bathina, Reina Armamento-Villareal

Abstract

Fractures associated with Type2 diabetes (T2DM) are major public health concerns in an increasingly obese and aging population. Patients with obesity or T2DM have normal or better than normal bone mineral density but at an increased risk for fractures. Hence it is crucial to understand the pathophysiology and mechanism of how T2DM and obesity result in altered bone physiology leading to increased fracture risk. Although enhanced osteoclast mediated bone resorption has been reported for these patients, the most notable observation among patients with T2DM is the reduction in bone formation from mostly dysfunction in osteoblast differentiation and survival. Studies have shown that obesity and T2DM are associated with increased adipogenesis which is most likely at the expense of reduced osteogenesis and myogenesis considering that adipocytes, osteoblasts, and myoblasts originate from the same progenitor cells. Furthermore, emerging data point to an inter-relationship between bone and metabolic homeostasis suggesting that these physiologic processes could be under the control of common regulatory pathways. Thus, this review aims to explore the complex mechanisms involved in lineage differentiation and their effect on bone pathophysiology in patients with obesity and T2DM along with an examination of potential novel pharmacological targets or a re-evaluation of existing drugs to improve bone homeostasis.

Keywords: adipogenesis; diabetes; myogenesis; obesity; osteogenesis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Bathina and Armamento-Villareal.

Figures

Figure 1
Figure 1
Schematic proposal of pathophysiology of bone fragility in Obesity and T2DM. Even though underlying mechanisms are unclear, both T2DM and Obesity causes oxidative stress and inflammation. T2DM causes the accumulation of AGEs with increased oxidative stress leading to osteoblast dysfunction and reduced bone formation (i.e. reduced Runx2 and OCN) followed by increasing bone fragility. On the other hand, obesity is associated with increased pro-inflammatory markers and pro-resorptive factors such as RANKL, TRAP5b. However, whether obesity by itself has any effect on osteoblastic function is unclear. Altogether, the above contribute to simultaneous effect on bone tissue homeostasis leading to bone fragility15-21.
Figure 2
Figure 2
Proposed effect of T therapy in Obesity. Binding of testosterone might initiate the PPARγ-Prdm16-Pgc1a complex with retinoid X receptor (RXR) which not only activates the browning of adipose tissue by re-programming but may also activate the myogenic cascade and runx2 gene involved osteogenesis. Thus, T therapy with its activator Prdm16 might be a novel therapeutic target and research on this transcriptional activator needs to be consider.

References

    1. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am (2003) 32(4):805–22, viii. doi: 10.1016/S0889-8529(03)00071-9
    1. Hariharan R, Odjidja EN, Scott D, Shivappa N, Hebert JR, Hodge A, et al. . The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes Rev (2022) 23(1):e13349. doi: 10.1111/obr.13349
    1. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism (2019) 92:121–35. doi: 10.1016/j.metabol.2018.11.001
    1. Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. . Obesity in the critically ill: a narrative review. Intensive Care Med (2019) 45(6):757–69. doi: 10.1007/s00134-019-05594-1
    1. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. . Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N Engl J Med (2019) 381(25):2440–50. doi: 10.1007/s00223-022-00993-x
    1. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Med (Abingdon) (2014) 42(12):698–702. doi: 10.1016/j.mpmed.2014.09.007
    1. Walsh JS, Vilaca T. Obesity, Type 2 Diabetes and Bone in Adults. Calcif Tissue Int (2017) 100(5):528–35. doi: 10.1007/s00223-016-0229-0
    1. Miao J, Brismar K, Nyren O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care (2005) 28(12):2850–5. doi: 10.2337/diacare.28.12.2850
    1. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int (2007) 18(4):427–44. doi: 10.1007/s00198-006-0253-4
    1. Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Muller R, et al. . Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol (2022) 10(3):207–20. doi: 10.1016/S2213-8587(21)00347-8
    1. Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, et al. . Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev (2019) 40(5):1187–206. doi: 10.1210/er.2018-00138
    1. Aguirre LE, Colleluori G, Dorin R, Robbins D, Chen R, Jiang B, et al. . Hypogonadal Men with Higher Body Mass Index have Higher Bone Density and Better Bone Quality but Reduced Muscle Density. CalcifTissue Int (2017) 101(6):602–11. doi: 10.1007/s00223-017-0316-x
    1. Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol (2016) 230(3):R115–30. doi: 10.1530/JOE-16-0089
    1. Hind K, Pearce M, Birrell F. Total and Visceral Adiposity Are Associated With Prevalent Vertebral Fracture in Women but Not Men at Age 62 Years: The Newcastle Thousand Families Study. J Bone Miner Res (2017) 32(5):1109–15. doi: 10.1002/jbmr.3085
    1. Bhupathiraju SN, Dawson-Hughes B, Hannan MT, Lichtenstein AH, Tucker KL. Centrally located body fat is associated with lower bone mineral density in older Puerto Rican adults. Am J Clin Nutr (2011) 94(4):1063–70. doi: 10.3945/ajcn.111.016030
    1. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. JClinEndocrinolMetab (2007) 92(5):1640–6. doi: 10.1210/jc.2006-0572
    1. Ramirez-Moreno E, Arias-Rico J, Jimenez-Sanchez RC, Estrada-Luna D, Jimenez-Osorio AS, Zafra-Rojas QY, et al. . Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods (2022) 11(9):1232. doi: 10.3390/foods11091232
    1. Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact (2020) 20(3):372–81.
    1. Vega GL, Grundy SM. Metabolic risk susceptibility in men is partially related to adiponectin/leptin ratio. J Obes (2013) 2013:409679. doi: 10.1155/2013/409679
    1. Gavrila A, Chan JL, Yiannakouris N, Kontogianni M, Miller LC, Orlova C, et al. . Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab (2003) 88(10):4823–31. doi: 10.1210/jc.2003-030214
    1. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. . Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone (2003) 33(4):646–51. doi: 10.1016/S8756-3282(03)00237-0
    1. Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci (2010) 1192:292–7. doi: 10.1111/j.1749-6632.2009.05252.x
    1. Jain RK, Vokes T. Visceral Adipose Tissue is Negatively Associated With Bone Mineral Density in NHANES 2011-2018. J Endocr Soc (2023) 7(4):bvad008. doi: 10.1210/jendso/bvad008
    1. Dytfeld J, Michalak M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res (2017) 29(2):301–9. doi: 10.1007/s40520-016-0562-1
    1. Faienza MF, Pontrelli P, Brunetti G. Type 2 diabetes and bone fragility in children and adults. World J Diabetes (2022) 13(11):900–11. doi: 10.4239/wjd.v13.i11.900
    1. Kurra S, Siris E. Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab Res Rev (2011) 27(5):430–5. doi: 10.1002/dmrr.1197
    1. Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, et al. . Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) (2023) 12(4):928. doi: 10.3390/antiox12040928
    1. Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, et al. . Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine (2012) 57(1):136–42. doi: 10.1016/j.cyto.2011.09.029
    1. Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflammation (2014) 2014:975872. doi: 10.1155/2014/975872
    1. Sylvawani M, Setyohadi B, Purnamasari D, Abdullah M, Kurniawan MR. Comparison of insulin-like growth factor-1 and sclerostin levels between premenopausal women with and without diabetes mellitus. J Taibah Univ Med Sci (2021) 16(5):719–23. doi: 10.1016/j.jtumed.2021.05.007
    1. An Y, Liu S, Wang W, Dong H, Zhao W, Ke J, et al. . Low serum levels of bone turnover markers are associated with the presence and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes (2021) 13(2):111–23. doi: 10.1111/1753-0407.13089
    1. Hou Y, Hou X, Nie Q, Xia Q, Hu R, Yang X, et al. . Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes Metab Syndr Obes (2023) 16:1177–92. doi: 10.2147/DMSO.S400285
    1. Sanches CP, Vianna AGD, Barreto FC. The impact of type 2 diabetes on bone metabolism. Diabetol Metab Syndr (2017) 9:85. doi: 10.1186/s13098-017-0278-1
    1. Wu X, Zhang Y, Xing Y, Zhao B, Zhou C, Wen Y, et al. . High-fat and high-glucose microenvironment decreases Runx2 and TAZ expression and inhibits bone regeneration in the mouse. J Orthop Surg Res (2019) 14(1):55. doi: 10.1186/s13018-019-1084-2
    1. Fowlkes JL, Bunn RC, Liu L, Wahl EC, Coleman HN, Cockrell GE, et al. . Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology (2008) 149(4):1697–704. doi: 10.1210/en.2007-1408
    1. Acosta FM, Jia UA, Stojkova K, Pacelli S, Brey EM, Rathbone C. Divergent effects of myogenic differentiation and diabetes on the capacity for muscle precursor cell adipogenic differentiation in a fibrin matrix. Biochem Biophys Res Commun (2020) 526(1):21–8. doi: 10.1016/j.bbrc.2020.03.025
    1. Scarda A, Franzin C, Milan G, Sanna M, Dal Pra C, Pagano C, et al. . Increased adipogenic conversion of muscle satellite cells in obese Zucker rats. Int J Obes (Lond) (2010) 34(8):1319–27. doi: 10.1038/ijo.2010.47
    1. Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE, Jr., et al. . Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. MolBiolCell (2005) 16(4):2039–48. doi: 10.1091/mbc.e04-08-0720
    1. Jiang J, Li P, Ling H, Xu Z, Yi B, Zhu S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum Cell (2018) 31(4):282–91. doi: 10.1007/s13577-018-0210-5
    1. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. . Obesity is not protective against fracture in postmenopausal women: GLOW. AmJMed (2011) 124(11):1043–50. doi: 10.1016/j.amjmed.2011.06.013
    1. Prieto-Alhambra D, Premaor MO, Fina AF, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. . The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. JBone MinerRes (2012) 27(2):294–300. doi: 10.1002/jbmr.1466
    1. Armstrong ME, Spencer EA, Cairns BJ, Banks E, Pirie K, Green J, et al. . Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res (2011) 26(6):1330–8. doi: 10.1002/jbmr.315
    1. Cipriani C, Pepe J, Colangelo L, Minisola S. Vitamin D and Secondary Hyperparathyroid States. Front Horm Res (2018) 50:138–48. doi: 10.1159/000486077
    1. Vilaca T, Evans A, Gossiel F, Paggiosi M, Eastell R, Walsh JS. Fat, adipokines, bone structure and bone regulatory factors associations in obesity. Eur J Endocrinol (2022) 187(6):743–50. doi: 10.1530/EJE-22-0530
    1. Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F, Dalamaga M. Vitamin D and Obesity: Current Evidence and Controversies. Curr Obes Rep (2021) 10(2):162–80. doi: 10.1007/s13679-021-00433-1
    1. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, et al. . High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care (2013) 36(6):1619–28. doi: 10.2337/dc12-1188
    1. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, et al. . Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol (2012) 27(5):319–32. doi: 10.1007/s10654-012-9674-x
    1. Liu B, Liu J, Pan J, Zhao C, Wang Z, Zhang Q. The association of diabetes status and bone mineral density among US adults: evidence from NHANES 2005-2018. BMC Endocr Disord (2023) 23(1):27. doi: 10.1186/s12902-023-01266-w
    1. Tonks KT, White CP, Center JR, Samocha-Bonet D, Greenfield JR. Bone Turnover Is Suppressed in Insulin Resistance, Independent of Adiposity. J Clin Endocrinol Metab (2017) 102(4):1112–21. doi: 10.1210/jc.2016-3282
    1. Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Van Houtven C, et al. . Glycemic Control and Insulin Treatment Alter Fracture Risk in Older Men With Type 2 Diabetes Mellitus. J Bone Miner Res (2019) 34(11):2045–51. doi: 10.1002/jbmr.3826
    1. Vestergaard P. Diabetes and bone fracture: risk factors for old and young. Diabetologia (2014) 57(10):2007–8. doi: 10.1007/s00125-014-3338-1
    1. Schwartz AV. Epidemiology of fractures in type 2 diabetes. Bone (2016) 82:2–8. doi: 10.1016/j.bone.2015.05.032
    1. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al. . Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. JClinEndocrinolMetab (2006) 91(9):3404–10. doi: 10.1210/jc.2006-0614
    1. Purnamasari D, Puspitasari MD, Setiyohadi B, Nugroho P, Isbagio H. Low bone turnover in premenopausal women with type 2 diabetes mellitus as an early process of diabetes-associated bone alterations: a cross-sectional study. BMC Endocr Disord (2017) 17(1):72. doi: 10.1186/s12902-017-0224-0
    1. Zeng H, Ge J, Xu W, Ma H, Chen L, Xia M, et al. . Type 2 Diabetes Is Causally Associated With Reduced Serum Osteocalcin: A Genomewide Association and Mendelian Randomization Study. J Bone Miner Res (2021) 36(9):1694–707. doi: 10.1002/jbmr.4330
    1. Wang Q, Zhang B, Xu Y, Xu H, Zhang N. The Relationship between Serum Osteocalcin Concentration and Glucose Metabolism in Patients with Type 2 Diabetes Mellitus. Int J Endocrinol (2013) 2013:842598. doi: 10.1155/2013/842598
    1. Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, et al. . Circulating osteogenic precursor cells in type 2 diabetes mellitus. JClinEndocrinolMetab (2012) 97(9):3240–50. doi: 10.1210/jc.2012-1546
    1. Colleluori G, Aguirre L, Dorin R, Robbins D, Blevins D, Barnouin Y, et al. . Hypogonadal men with type 2 diabetes mellitus have smaller bone size and lower bone turnover. Bone (2017) 99:14–9. doi: 10.1016/j.bone.2017.03.039
    1. Ballato E, Deepika F, Prado M, Russo V, Fuenmayor V, Bathina S, et al. . Circulating osteogenic progenitors and osteoclast precursors are associated with long-term glycemic control, sex steroids, and visceral adipose tissue in men with type 2 diabetes mellitus. Front Endocrinol (Lausanne) (2022) 13:936159. doi: 10.3389/fendo.2022.936159
    1. Vigevano F, Gregori G, Colleluori G, Chen R, Autemrongsawat V, Napoli N, et al. . In Men With Obesity, T2DM Is Associated With Poor Trabecular Microarchitecture and Bone Strength and Low Bone Turnover. J Clin Endocrinol Metab (2021) 106(5):1362–76. doi: 10.1210/clinem/dgab061
    1. Adami G, Gatti D, Rossini M, Orsolini G, Pollastri F, Bertoldo E, et al. . Risk of fragility fractures in obesity and diabetes: a retrospective analysis on a nation-wide cohort. Osteoporos Int (2020) 31(11):2113–22. doi: 10.1007/s00198-020-05519-5
    1. Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, et al. . Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep (2019) 27(7):2050–62 e6. doi: 10.1016/j.celrep.2019.04.066
    1. Mota de Sa P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol (2017) 7(2):635–74. doi: 10.1002/cphy.c160022
    1. Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol (2012) 4(9):a008417. doi: 10.1101/cshperspect.a008417
    1. Cereijo R, Giralt M, Villarroya F. Thermogenic brown and beige/brite adipogenesis in humans. Ann Med (2015) 47(2):169–77. doi: 10.3109/07853890.2014.952328
    1. Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor gamma and C/EBPalpha synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol (2014) 34(6):939–54. doi: 10.1128/MCB.01344-13
    1. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. . PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell (1999) 4(4):585–95. doi: 10.1016/S1097-2765(00)80209-9
    1. Dammone G, Karaz S, Lukjanenko L, Winkler C, Sizzano F, Jacot G, et al. . PPARgamma Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration. Int J Mol Sci (2018) 19(7):2044. doi: 10.3390/ijms19072044
    1. Sun W, He T, Qin C, Qiu K, Zhang X, Luo Y, et al. . A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Sci Rep (2017) 7:44133. doi: 10.1038/srep44133
    1. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. . Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell (2014) 156(1-2):304–16. doi: 10.1016/j.cell.2013.12.021
    1. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. . Transcriptional control of brown fat determination by PRDM16. Cell Metab (2007) 6(1):38–54. doi: 10.1016/j.cmet.2007.06.001
    1. Chen S, Bastarrachea RA, Shen JS, Laviada-Nagel A, Rodriguez-Ayala E, Nava-Gonzalez EJ, et al. . Ectopic BAT mUCP-1 overexpression in SKM by delivering a BMP7/PRDM16/PGC-1a gene cocktail or single PRMD16 using non-viral UTMD gene therapy. Gene Ther (2018) 25(7):497–509. doi: 10.1038/s41434-018-0036-5
    1. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. . PRDM16 controls a brown fat/skeletal muscle switch. Nature (2008) 454(7207):961–7. doi: 10.1038/nature07182
    1. Bredella MA, Gill CM, Rosen CJ, Klibanski A, Torriani M. Positive effects of brown adipose tissue on femoral bone structure. Bone (2014) 58:55–8. doi: 10.1016/j.bone.2013.10.007
    1. Lee P, Brychta RJ, Collins MT, Linderman J, Smith S, Herscovitch P, et al. . Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women. Osteoporos Int (2013) 24(4):1513–8. doi: 10.1007/s00198-012-2110-y
    1. Ponrartana S, Aggabao PC, Hu HH, Aldrovandi GM, Wren TA, Gilsanz V. Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab (2012) 97(8):2693–8. doi: 10.1210/jc.2012-1589
    1. Beekman KM, Veldhuis-Vlug AG, van der Veen A, den Heijer M, Maas M, Kerckhofs G, et al. . The effect of PPARgamma inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. Am J Physiol Endocrinol Metab (2019) 316(1):E96–E105. doi: 10.1152/ajpendo.00265.2018
    1. Weske S, Vaidya M, Reese A, von Wnuck Lipinski K, Keul P, Bayer JK, et al. . Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nat Med (2018) 24(5):667–78. doi: 10.1038/s41591-018-0005-y
    1. Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol (2007) 19(6):612–7. doi: 10.1016/j.ceb.2007.09.014
    1. Colaianni G, Brunetti G, Faienza MF, Colucci S, Grano M. Osteoporosis and obesity: Role of Wnt pathway in human and murine models. World J Orthop (2014) 5(3):242–6. doi: 10.5312/wjo.v5.i3.242
    1. Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med (2021) 25(14):6479–95. doi: 10.1111/jcmm.16663
    1. Martinez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) (2022) 13(1):138. doi: 10.3390/genes13010138
    1. Benzler J, Andrews ZB, Pracht C, Stohr S, Shepherd PR, Grattan DR, et al. . Hypothalamic WNT signalling is impaired during obesity and reinstated by leptin treatment in male mice. Endocrinology (2013) 154(12):4737–45. doi: 10.1210/en.2013-1746
    1. Gassel LC, Schneider S, Banke IJ, Braun KF, Volkering C, Zeeb L, et al. . Dysregulation of Wnt signaling in bone of type 2 diabetes mellitus and diabetic Charcot arthropathy. BMC Musculoskelet Disord (2022) 23(1):365. doi: 10.1186/s12891-022-05314-9
    1. Galli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. JDentRes (2010) 89(4):331–43. doi: 10.1177/0022034510363963
    1. Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem (2007) 282(19):14515–24. doi: 10.1074/jbc.M700030200
    1. Cosman F, Crittenden DB, Grauer A. Romosozumab Treatment in Postmenopausal Osteoporosis. N Engl J Med (2017) 376(4):396–7. doi: 10.1056/NEJMc1615367
    1. Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG, et al. . Sarcopenic Obesity and Its Temporal Associations With Changes in Bone Mineral Density, Incident Falls, and Fractures in Older Men: The Concord Health and Ageing in Men Project. J Bone Miner Res (2017) 32(3):575–83. doi: 10.1002/jbmr.3016
    1. Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, et al. . Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle (2019) 10(3):485–500. doi: 10.1002/jcsm.12411
    1. Verschueren S, Gielen E, O'Neill TW, Pye SR, Adams JE, Ward KA, et al. . Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. OsteoporosInt (2012) 24(1):87–98. doi: 10.1007/s00198-012-2057-z
    1. Turcotte AF, Jean S, Morin SN, Mac-Way F, Gagnon C. Relationships between Obesity and Incidence of Fractures in a Middle-Aged Population: A Study from the CARTaGENE Cohort. JBMR Plus (2023) 7(5):e10730. doi: 10.1002/jbm4.10730
    1. Turcotte AF, O'Connor S, Morin SN, Gibbs JC, Willie BM, Jean S, et al. . Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PloS One (2021) 16(6):e0252487. doi: 10.1371/journal.pone.0252487
    1. Johansson H, Kanis JA, Oden A, McCloskey E, Chapurlat RD, Christiansen C, et al. . A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res (2014) 29(1):223–33. doi: 10.1002/jbmr.2017
    1. Batsis JA, Mackenzie TA, Lopez-Jimenez F, Bartels SJ. Sarcopenia, sarcopenic obesity, and functional impairments in older adults: National Health and Nutrition Examination Surveys 1999-2004. NutrRes (2015) 35(12):1031–9. doi: 10.1016/j.nutres.2015.09.003
    1. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et al. . Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res (2017) 29(1):35–42. doi: 10.1007/s40520-016-0705-4
    1. Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. Exercise as a remedy for sarcopenia. Curr Opin Clin Nutr Metab Care (2014) 17(1):25–31. doi: 10.1097/MCO.0000000000000018
    1. Phu S, Boersma D, Duque G. Exercise and Sarcopenia. J Clin Densitom (2015) 18(4):488–92. doi: 10.1016/j.jocd.2015.04.011
    1. Montero-Fernandez N, Serra-Rexach JA. Role of exercise on sarcopenia in the elderly. Eur J Phys Rehabil Med (2013) 49(1):131–43.
    1. Keogh J, Henwood T, Climstein M. Exercise to reduce effects of sarcopenia. Aust Nurs J (2012) 19(9):39–40.
    1. Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, et al. . Exercise Decreases Marrow Adipose Tissue Through ss-Oxidation in Obese Running Mice. J Bone Miner Res (2017) 32(8):1692–702. doi: 10.1002/jbmr.3159
    1. Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. . Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA (2014) 311(23):2387–96. doi: 10.1001/jama.2014.5616
    1. Custodero C, Agosti P, Anton SD, Manini TM, Lozupone M, Panza F, et al. . Effect of Physical Activity Intervention on Gait Speed by Frailty Condition: A Randomized Clinical Trial. J Am Med Dir Assoc (2023) 24(4):489–96. doi: 10.1016/j.jamda.2023.01.023
    1. Villareal DT, Aguirre L, Gurney AB, Waters DL, Sinacore DR, Colombo E, et al. . Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N Engl J Med (2017) 376(20):1943–55. doi: 10.1056/NEJMoa1616338
    1. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. . Weight loss, exercise, or both and physical function in obese older adults. NEnglJMed (2011) 364(13):1218–29. doi: 10.1056/NEJMoa1008234
    1. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol (2018) 14(9):513–37. doi: 10.1038/s41574-018-0062-9
    1. Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol (Lausanne) (2020) 11:568. doi: 10.3389/fendo.2020.00568
    1. Yoshimoto Y, Oishi Y. Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther (2023) 243:108357. doi: 10.1016/j.pharmthera.2023.108357
    1. Lambert CP, Wright NR, Finck BN, Villareal DT. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. JApplPhysiol (2008) 105(2):473–8. doi: 10.1152/japplphysiol.00006.2008
    1. Verpoorten S, Sfyri P, Scully D, Mitchell R, Tzimou A, Mougios V, et al. . Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiol (Oxf) (2020) 228(3):e13395. doi: 10.1111/apha.13395
    1. Kevorkova O, Martineau C, Martin-Falstrault L, Sanchez-Dardon J, Brissette L, Moreau R. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PloS One (2013) 8(10):e77701. doi: 10.1371/journal.pone.0077701
    1. Ballato E, Deepika FNU, Russo V, Fleires-Gutierrez A, Colleluori G, Fuenmayor V, et al. . One-Year Mean A1c of > 7% is Associated with Poor Bone Microarchitecture and Strength in Men with Type 2 Diabetes Mellitus. Calcif Tissue Int (2022) 11(3):267–78. doi: 10.1007/s00223-022-00993-x
    1. Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto Y, Nonaka I, et al. . Osteogenic properties of human myogenic progenitor cells. Mech Dev (2008) 125(3-4):257–69. doi: 10.1016/j.mod.2007.11.004
    1. Qin X, Jiang Q, Komori H, Sakane C, Fukuyama R, Matsuo Y, et al. . Runt-related transcription factor-2 (Runx2) is required for bone matrix protein gene expression in committed osteoblasts in mice. J Bone Miner Res (2021) 36(10):2081–95. doi: 10.1002/jbmr.4386
    1. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell (2004) 3(6):379–89. doi: 10.1111/j.1474-9728.2004.00127.x
    1. Xu R, Zeng Q, Xia C, Chen J, Wang P, Zhao S, et al. . Fractions of Shen-Sui-Tong-Zhi Formula Enhance Osteogenesis Via Activation of beta-Catenin Signaling in Growth Plate Chondrocytes. Front Pharmacol (2021) 12:711004. doi: 10.3389/fphar.2021.711004
    1. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development (2011) 138(17):3625–37. doi: 10.1242/dev.064162
    1. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, et al. . Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (2011) 138(17):3647–56. doi: 10.1242/dev.067587
    1. Kim MJ, Kim WS, Byun JE, Choi JH, Yoon SR, Choi I, et al. . Inhibition of Osteoclastogenesis by Thioredoxin-Interacting Protein-Derived Peptide (TN13). J Clin Med (2019) 8(4):431. doi: 10.3390/jcm8040431
    1. Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. . LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med (2016) 22(5):539–46. doi: 10.1038/nm.4076
    1. Nagaoka M, Maeda T, Moriwaki S, Nomura A, Kato Y, Niida S, et al. . Petunidin, a B-ring 5'-O-Methylated Derivative of Delphinidin, Stimulates Osteoblastogenesis and Reduces sRANKL-Induced Bone Loss. Int J Mol Sci (2019) 20(11):2795. doi: 10.3390/ijms20112795
    1. Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J, et al. . A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood (2000) 96(9):3209–14.
    1. Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, et al. . Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem (2011) 286(50):43112–22. doi: 10.1074/jbc.M111.252775
    1. He L, Tang M, Xiao T, Liu H, Liu W, Li G, et al. . Obesity-Associated miR-199a/214 Cluster Inhibits Adipose Browning via PRDM16-PGC-1alpha Transcriptional Network. Diabetes (2018) 67(12):2585–600. doi: 10.2337/db18-0626
    1. Pradhan RN, Zachara M, Deplancke B. A systems perspective on brown adipogenesis and metabolic activation. Obes Rev (2017) 18 Suppl 1:65–81. doi: 10.1111/obr.12512
    1. Jiang N, Yang M, Han Y, Zhao H, Sun L. PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Front Pharmacol (2022) 13:870250. doi: 10.3389/fphar.2022.870250
    1. Seo YJ, Kim KJ, Choi J, Koh EJ, Lee BY. Spirulina maxima Extract Reduces Obesity through Suppression of Adipogenesis and Activation of Browning in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice. Nutrients (2018) 10(6):712. doi: 10.3390/nu10060712
    1. Kaneda-Nakashima K, Igawa K, Suwanruengsri M, Naoyuki F, Ichikawa T, Funamoto T, et al. . Role of Mel1/Prdm16 in bone differentiation and morphology. Exp Cell Res (2022) 410(2):112969. doi: 10.1016/j.yexcr.2021.112969
    1. Minteer D, Marra KG, Rubin JP. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv Biochem Eng Biotechnol (2013) 129:59–71. doi: 10.1007/10_2012_146
    1. Song Y, Du H, Dai C, Zhang L, Li S, Hunter DJ, et al. . Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regener Med (2018) 13(3):295–307. doi: 10.2217/rme-2017-0152
    1. Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev (2018) 19(7):888–904. doi: 10.1111/obr.12679
    1. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl Med (2019) 8(6):504–11. doi: 10.1002/sctm.18-0122
    1. Ye X, Zhang P, Xue S, Xu Y, Tan J, Liu G. Adipose-derived stem cells alleviate osteoporosis by enhancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy (2014) 16(12):1643–55. doi: 10.1016/j.jcyt.2014.07.009
    1. Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, et al. . Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne) (2020) 11:430. doi: 10.3389/fendo.2020.00430
    1. Wang Y, Grainger DW. Developing siRNA therapies to address osteoporosis. Ther Delivery (2013) 4(10):1239–46. doi: 10.4155/tde.13.85
    1. Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, et al. . A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater (2022) 10:207–21. doi: 10.1016/j.bioactmat.2021.09.015
    1. Liang C, Guo B, Wu H, Shao N, Li D, Liu J, et al. . Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med (2015) 21(3):288–94. doi: 10.1038/nm.3791
    1. He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, et al. . Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem (2020) 27(13):2189–219. doi: 10.2174/0929867325666181008142831
    1. Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol (2022) 13:909408. doi: 10.3389/fphar.2022.909408
    1. Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging (2016) 11:1317–24. doi: 10.2147/CIA.S115472
    1. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. JClinEndocrinolMetab (1997) 82(8):2386–90. doi: 10.1210/jcem.82.8.4163
    1. Benito M, Vasilic B, Wehrli FW, Bunker B, Wald M, Gomberg B, et al. . Effect of testosterone replacement on trabecular architecture in hypogonadal men. JBone MinerRes (2005) 20(10):1785–91. doi: 10.1359/JBMR.050606
    1. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, et al. . Effect of testosterone treatment on bone mineral density in men over 65 years of age. JClinEndocrinolMetab (1999) 84(6):1966–72. doi: 10.1210/jc.84.6.1966
    1. Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, et al. . Effect of Testosterone Treatment on Volumetric Bone Density and Strength in Older Men With Low Testosterone: A Controlled Clinical Trial. JAMA InternMed (2017) 177(4):471–9. doi: 10.1001/jamainternmed.2016.9539
    1. Ng Tang Fui M, Hoermann R, Bracken K, Handelsman DJ, Inder WJ, Stuckey BGA, et al. . Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT. J Clin Endocrinol Metab (2021) 106(8):e3143–e58. doi: 10.1210/clinem/dgab149
    1. Ng Tang Fui M, Hoermann R, Nolan B, Clarke M, Zajac JD, Grossmann M. Effect of testosterone treatment on bone remodelling markers and mineral density in obese dieting men in a randomized clinical trial. Sci Rep (2018) 8(1):9099. doi: 10.1038/s41598-018-27481-3
    1. Colleluori G, Aguirre L, Napoli N, Qualls C, Villareal DT, Armamento-Villareal R. Testosterone Therapy Effects on Bone Mass and Turnover in Hypogonadal Men with Type 2 Diabetes. J Clin Endocrinol Metab (2021) 106(8):e3058–e68. doi: 10.1210/clinem/dgab181
    1. Ghanim H, Dhindsa S, Green K, Abuaysheh S, Batra M, Makdissi A, et al. . Increase in Osteocalcin Following Testosterone Therapy in Men With Type 2 Diabetes and Subnormal Free Testosterone. J Endocr Soc (2019) 3(8):1617–30. doi: 10.1210/js.2018-00426
    1. Groti Antonic K. Impact of testosterone therapy on bone turnover markers in obese males with type 2 diabetes and functional hypogonadism. Aging male (2022) 25(1):269–77. doi: 10.1080/13685538.2022.2134338
    1. Thu HE, Mohamed IN, Hussain Z, Shuid AN. Dihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells. Iran J Basic Med Sci (2017) 20(8):894–904. doi: 10.22038/IJBMS.2017.9111
    1. Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, et al. . Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology (2001) 142(9):3800–8. doi: 10.1210/endo.142.9.8402
    1. Phillip M, Maor G, Assa S, Silbergeld A, Segev Y. Testosterone stimulates growth of tibial epiphyseal growth plate and insulin-like growth factor-1 receptor abundance in hypophysectomized and castrated rats. Endocrine (2001) 16(1):1–6. doi: 10.1385/ENDO:16:1:01
    1. Ren SG, Malozowski S, Sanchez P, Sweet DE, Loriaux DL, Cassorla F. Direct administration of testosterone increases rat tibial epiphyseal growth plate width. Acta Endocrinol (Copenh) (1989) 121(3):401–5. doi: 10.1530/acta.0.1210401
    1. Chin KY, Ima-Nirwana S. The effects of orchidectomy and supraphysiological testosterone administration on trabecular bone structure and gene expression in rats. Aging male (2015) 18(1):60–6. doi: 10.3109/13685538.2014.954995
    1. Sattler F, Bhasin S, He J, Chou CP, Castaneda-Sceppa C, Yarasheski K, et al. . Testosterone threshold levels and lean tissue mass targets needed to enhance skeletal muscle strength and function: the HORMA trial. J Gerontol A Biol Sci Med Sci (2011) 66(1):122–9. doi: 10.1093/gerona/glq183
    1. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology (2003) 144(11):5081–8. doi: 10.1210/en.2003-0741
    1. Gao K, Wang X, Liu Q, Chen W, Wang G, Zhang D, et al. . Evaluation of osteoblast differentiation and function when cultured on mesoporous bioactive glass adsorbed with testosterone. J Cell Biochem (2018) 119(7):5222–32. doi: 10.1002/jcb.26566
    1. Deepika F, Ballato E, Colleluori G, Aguirre L, Chen R, Qualls C, et al. . Baseline Testosterone Predicts Body Composition and Metabolic Response to Testosterone Therapy. Front Endocrinol (Lausanne) (2022) 13:915309. doi: 10.3389/fendo.2022.915309
    1. Aguirre LE, Colleluori G, Robbins D, Dorin R, Shah VO, Chen R, et al. . Bone and body composition response to testosterone therapy vary according to polymorphisms in the CYP19A1 gene. Endocrine (2019) 65(3):692–706. doi: 10.1007/s12020-019-02008-6
    1. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. . Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab (2018) 103(5):1715–44. doi: 10.1210/jc.2018-00229

Source: PubMed

3
Suscribir