An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer

Nguyen Phuoc Long, Kyung Hee Jung, Nguyen Hoang Anh, Hong Hua Yan, Tran Diem Nghi, Seongoh Park, Sang Jun Yoon, Jung Eun Min, Hyung Min Kim, Joo Han Lim, Joon Mee Kim, Johan Lim, Sanghyuk Lee, Soon-Sun Hong, Sung Won Kwon, Nguyen Phuoc Long, Kyung Hee Jung, Nguyen Hoang Anh, Hong Hua Yan, Tran Diem Nghi, Seongoh Park, Sang Jun Yoon, Jung Eun Min, Hyung Min Kim, Joo Han Lim, Joon Mee Kim, Johan Lim, Sanghyuk Lee, Soon-Sun Hong, Sung Won Kwon

Abstract

Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)OS = 2.2, p-value < 0.001), ANXA2 (HROS = 2.1, p-value < 0.001), and LAMC2 (HRDFS = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC.

Keywords: diagnostic biomarker; machine learning; meta-analysis; next-generation sequencing; pancreatic ductal adenocarcinoma; prognostic biomarker; systems biology; transcriptomics.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Screening process of innovative biomarker candidates for pancreatic cancer diagnosis and treatment. (a) Combined effect size distributions in transcriptome meta-analysis. (b) Selection of membrane protein-coding genes. (c) Selection of secretory protein-coding genes. The left circle of the Venn diagram (orange) represents the candidates from meta-analysis and the right circle of the Venn diagram (blue) represents the candidates curated from [17].
Figure 2
Figure 2
Kaplan–Meier (KM) plots of the overall survival of four promising prognostic candidates. (a) KM plot of ADAM9. (b) KM plot of ANXA2. (c) KM plot of ITGA2. (d) KM plot of MET.
Figure 3
Figure 3
Data exploration and diagnostic performance of 11 biomarker candidates in the Random Forests model. (a) The gene expression of CDH3 is higher in PDAC than in normal controls (n = 96), ****: p < 0.0001. (b) The gene expression of LAMC2 is higher in PDAC than in normal controls (n = 96). (c) Principal component analysis of PDAC versus normal controls. (d) Heatmap analysis of 11 biomarker candidates. (e) ROC curve of the random forests model in the test set (n = 28). (f) The importance scores of 11 biomarker candidates in the random forests model.
Figure 4
Figure 4
Immunohistochemical analysis for determination of LAMC2, ADAM9, and ANXA2 (Annexin A2) gene expression. (a) Scoring system for the three proteins in pancreatic tissues. (b) IHC scores of LAMC2, ADAM9, and ANXA2 in pancreatic tumors and normal controls (n = 86). ***: p < 0.001; ****: p < 0.0001. (c) Pairwise correlation of LAMC2, ADAM9, and ANXA2 expression. (d) Pairwise correlation of LAMC2, ADAM9, and ANXA9 at gene expression level (log2 of transcripts per million) in TGCA PC, TCGA normal pancreas, and Genotype-Tissue Expression Project (GTEx) derived normal pancreas.
Figure 4
Figure 4
Immunohistochemical analysis for determination of LAMC2, ADAM9, and ANXA2 (Annexin A2) gene expression. (a) Scoring system for the three proteins in pancreatic tissues. (b) IHC scores of LAMC2, ADAM9, and ANXA2 in pancreatic tumors and normal controls (n = 86). ***: p < 0.001; ****: p < 0.0001. (c) Pairwise correlation of LAMC2, ADAM9, and ANXA2 expression. (d) Pairwise correlation of LAMC2, ADAM9, and ANXA9 at gene expression level (log2 of transcripts per million) in TGCA PC, TCGA normal pancreas, and Genotype-Tissue Expression Project (GTEx) derived normal pancreas.

References

    1. Balachandran V.P., Luksza M., Zhao J.N., Makarov V., Moral J.A., Remark R., Herbst B., Askan G., Bhanot U., Senbabaoglu Y., et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–516. doi: 10.1038/nature24462.
    1. Raimondi S., Maisonneuve P., Lowenfels A.B. Epidemiology of pancreatic cancer: An overview. Nat. Rev. Gastroenterol. Hepatol. 2009;6:699–708. doi: 10.1038/nrgastro.2009.177.
    1. Kleeff J., Korc M., Apte M., La Vecchia C., Johnson C.D., Biankin A.V., Neale R.E., Tempero M., Tuveson D.A., Hruban R.H., et al. Pancreatic cancer. Nat. Rev. Dis. Primers. 2016;2:16022. doi: 10.1038/nrdp.2016.22.
    1. Decker G.A., Batheja M.J., Collins J.M., Silva A.C., Mekeel K.L., Moss A.A., Nguyen C.C., Lake D.F., Miller L.J. Risk factors for pancreatic adenocarcinoma and prospects for screening. Gastroenterol. Hepatol. 2010;6:246–254.
    1. Semaan A., Maitra A. Pancreatic cancer in 2017: Rebooting pancreatic cancer knowledge and treatment options. Nat. Rev. Gastroenterol. Hepatol. 2018;15:76–78. doi: 10.1038/nrgastro.2017.182.
    1. Sant G.R., Knopf K.B., Albala D.M. Live-single-cell phenotypic cancer biomarkers-future role in precision oncology? NPJ Precis. Oncol. 2017;1:21. doi: 10.1038/s41698-017-0025-y.
    1. Russell M.R., Graham C., D’Amato A., Gentry-Maharaj A., Ryan A., Kalsi J.K., Ainley C., Whetton A.D., Menon U., Jacobs I., et al. A combined biomarker panel shows improved sensitivity for the early detection of ovarian cancer allowing the identification of the most aggressive type II tumours. Br. J. Cancer. 2017;117:666–674. doi: 10.1038/bjc.2017.199.
    1. Lee H.S., Jang C.Y., Kim S.A., Park S.B., Jung D.E., Kim B.O., Kim H.Y., Chung M.J., Park J.Y., Bang S., et al. Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer. Sci. Rep. 2018;8:3383. doi: 10.1038/s41598-018-21823-x.
    1. Chan A., Prassas I., Dimitromanolakis A., Brand R.E., Serra S., Diamandis E.P., Blasutig I.M. Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:5787–5795. doi: 10.1158/1078-0432.CCR-14-0289.
    1. Long N.P., Yoon S.J., Anh N.H., Nghi T.D., Lim D.K., Hong Y.J., Hong S.-S., Kwon S.W. A systematic review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. Metabolomics. 2018;14:109. doi: 10.1007/s11306-018-1404-2.
    1. Zeh H.J., Winikoff S., Landsittel D.P., Gorelik E., Marrangoni A.M., Velikokhatnaya L., Winans M.T., Lee K., Moser A., Bartlett D., et al. Multianalyte profiling of serum cytokines for detection of pancreatic cancer. Cancer Biomark. Sect. A Dis. Markers. 2005;1:259–269. doi: 10.3233/CBM-2005-1601.
    1. Brand R.E., Nolen B.M., Zeh H.J., Allen P.J., Eloubeidi M.A., Goldberg M., Elton E., Arnoletti J.P., Christein J.D., Vickers S.M., et al. Serum biomarker panels for the detection of pancreatic cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:805–816. doi: 10.1158/1078-0432.CCR-10-0248.
    1. Goymer P. Early detection for pancreatic cancer. Nat. Rev. Cancer. 2008;8:408. doi: 10.1038/nrc2407.
    1. Sener S.F., Fremgen A., Menck H.R., Winchester D.P. Pancreatic cancer: A report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database. J. Am. Coll. Surg. 1999;189:1–7. doi: 10.1016/S1072-7515(99)00075-7.
    1. Hu J., Locasale J.W., Bielas J.H., O’Sullivan J., Sheahan K., Cantley L.C., Heiden M.G.V., Vitkup D. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 2013;31:522. doi: 10.1038/nbt.2530.
    1. Peng X., Chen Z., Farshidfar F., Xu X., Lorenzi P.L., Wang Y., Cheng F., Tan L., Mojumdar K., Du D., et al. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep. 2018;23:255–269.e4. doi: 10.1016/j.celrep.2018.03.077.
    1. Harsha H.C., Kandasamy K., Ranganathan P., Rani S., Ramabadran S., Gollapudi S., Balakrishnan L., Dwivedi S.B., Telikicherla D., Selvan L.D.N., et al. A Compendium of Potential Biomarkers of Pancreatic Cancer. PLoS Med. 2009;6:e1000046. doi: 10.1371/journal.pmed.1000046.
    1. Zhang X., Shi S., Zhang B., Ni Q., Yu X., Xu J. Circulating biomarkers for early diagnosis of pancreatic cancer: Facts and hopes. Am. J. Cancer Res. 2018;8:332–353.
    1. Oldfield L.E., Connor A.A., Gallinger S. Molecular Events in the Natural History of Pancreatic Cancer. Trends Cancer. 2017;3:336–346. doi: 10.1016/j.trecan.2017.04.005.
    1. Yachida S., Jones S., Bozic I., Antal T., Leary R., Fu B., Kamiyama M., Hruban R.H., Eshleman J.R., Nowak M.A., et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114. doi: 10.1038/nature09515.
    1. Diamandis E.P. The failure of protein cancer biomarkers to reach the clinic: Why, and what can be done to address the problem? BMC Med. 2012;10:87. doi: 10.1186/1741-7015-10-87.
    1. Ding L., Wendl M.C., McMichael J.F., Raphael B.J. Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 2014;15:556. doi: 10.1038/nrg3767.
    1. Garg M., Braunstein G., Koeffler H.P. LAMC2 as a therapeutic target for cancers. Expert Opin. Ther. Targets. 2014;18:979–982. doi: 10.1517/14728222.2014.934814.
    1. Mauri P., Scarpa A., Nascimbeni A.C., Benazzi L., Parmagnani E., Mafficini A., Della Peruta M., Bassi C., Miyazaki K., Sorio C. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: A strategy for identification of novel cancer markers. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005;19:1125–1127. doi: 10.1096/fj.04-3000fje.
    1. Zheng L., Jaffee E.M. Annexin A2 is a new antigenic target for pancreatic cancer immunotherapy. Oncoimmunology. 2012;1:112–114. doi: 10.4161/onci.1.1.18017.
    1. Grützmann R., Lüttges J., Sipos B., Ammerpohl O., Dobrowolski F., Alldinger I., Kersting S., Ockert D., Koch R., Kalthoff H., et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br. J. Cancer. 2004;90:1053. doi: 10.1038/sj.bjc.6601645.
    1. Pandey P., Sliker B., Peters H.L., Tuli A., Herskovitz J., Smits K., Purohit A., Singh R.K., Dong J., Batra S.K., et al. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget. 2016;7:19430–19444. doi: 10.18632/oncotarget.7103.
    1. Takahashi S., Hasebe T., Oda T., Sasaki S., Kinoshita T., Konishi M., Ochiai T., Ochiai A. Cytoplasmic expression of laminin γ2 chain correlates with postoperative hepatic metastasis and poor prognosis in patients with pancreatic ductal adenocarcinoma. Cancer. 2002;94:1894–1901. doi: 10.1002/cncr.10395.
    1. Kosanam H., Prassas I., Chrystoja C.C., Soleas I., Chan A., Dimitromanolakis A., Blasutig I.M., Ruckert F., Gruetzmann R., Pilarsky C., et al. Laminin, gamma 2 (LAMC2): A promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues. Mol. Cell. Proteom. 2013;12:2820–2832. doi: 10.1074/mcp.M112.023507.
    1. Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The Catalogue of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015.
    1. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860. doi: 10.1038/nature01322.
    1. Bach D.-H., Lee S.K. Long noncoding RNAs in cancer cells. Cancer Lett. 2018;419:152–166. doi: 10.1016/j.canlet.2018.01.053.
    1. Cavallo F., De Giovanni C., Nanni P., Forni G., Lollini P.L. 2011: The immune hallmarks of cancer. Cancer Immunol. Immunother. CII. 2011;60:319–326. doi: 10.1007/s00262-010-0968-0.
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Cairns R.A., Mak T.W. The current state of cancer metabolism. Nat. Rev. Cancer. 2016;16:613. doi: 10.1038/nrc.2016.100.
    1. Phan L.M., Yeung S.C., Lee M.H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 2014;11:1–19. doi: 10.7497/j.issn.2095-3941.2014.01.001.
    1. Muñoz-Pinedo C., El Mjiyad N., Ricci J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 2012;3:e248. doi: 10.1038/cddis.2011.123.
    1. Bach D.-H., Hong J.-Y., Park H.J., Lee S.K. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int. J. Cancer. 2017;141:220–230. doi: 10.1002/ijc.30669.
    1. Bach D.-H., Park H.J., Lee S.K. The Dual Role of Bone Morphogenetic Proteins in Cancer. Mol. Ther. Oncol. 2018;8:1–13. doi: 10.1016/j.omto.2017.10.002.
    1. Hamada S., Satoh K., Fujibuchi W., Hirota M., Kanno A., Unno J., Masamune A., Kikuta K., Kume K., Shimosegawa T. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. MCR. 2012;10:3–10. doi: 10.1158/1541-7786.MCR-11-0272.
    1. Keklikoglou I., Hosaka K., Bender C., Bott A., Koerner C., Mitra D., Will R., Woerner A., Muenstermann E., Wilhelm H., et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene. 2015;34:4867–4878. doi: 10.1038/onc.2014.408.
    1. Malgerud L., Lindberg J., Wirta V., Gustafsson-Liljefors M., Karimi M., Moro C.F., Stecker K., Picker A., Huelsewig C., Stein M., et al. Bioinformatory-assisted analysis of next-generation sequencing data for precision medicine in pancreatic cancer. Mol. Oncol. 2017;11:1413–1429. doi: 10.1002/1878-0261.12108.
    1. Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616.
    1. Gautier L., Cope L., Bolstad B.M., Irizarry R.A. Affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–315. doi: 10.1093/bioinformatics/btg405.
    1. Xia J., Gill E.E., Hancock R.E.W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015;10:823. doi: 10.1038/nprot.2015.052.
    1. Long N.P., Jung K.H., Yoon S.J., Anh N.H., Nghi T.D., Kang Y.P., Yan H.H., Min J.E., Hong S.S., Kwon S.W. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers. Oncotarget. 2017;8:109436–109456. doi: 10.18632/oncotarget.22689.
    1. Lê S., Josse J., Husson F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008;25:18. doi: 10.18637/jss.v025.i01.
    1. Xia J., Sinelnikov I.V., Han B., Wishart D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–W257. doi: 10.1093/nar/gkv380.
    1. Kuhn M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008;28:26. doi: 10.18637/jss.v028.i05.
    1. Pedersen T.L., Benesty M. Lime: Local Interpretable Model-Agnostic Explanations. [(accessed on 27 January 2019)];2018 R Package Version 0.4.1. Available online: .
    1. Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi: 10.1093/nar/gkx247.
    1. Anaya J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci. 2016;2:e67. doi: 10.7717/peerj-cs.67.
    1. Tan Y., Tan Y., Lu L., Zhang H., Sun C., Liang Y., Zeng J., Yang X., Li D., Zou H. HPCDb: An integrated database of pancreatic cancer. bioRxiv. 2017 doi: 10.1101/169771.
    1. Dayem Ullah A.Z., Cutts R.J., Ghetia M., Gadaleta E., Hahn S.A., Crnogorac-Jurcevic T., Lemoine N.R., Chelala C. The pancreatic expression database: Recent extensions and updates. Nucleic Acids Res. 2014;42:D944–D949. doi: 10.1093/nar/gkt959.
    1. Baker S., Ali I., Silins I., Pyysalo S., Guo Y., Hogberg J., Stenius U., Korhonen A. Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics. 2017;33:3973–3981. doi: 10.1093/bioinformatics/btx454.
    1. Chou C.H., Shrestha S., Yang C.D., Chang N.W., Lin Y.L., Liao K.W., Huang W.C., Sun T.H., Tu S.J., Lee W.H., et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296–D302. doi: 10.1093/nar/gkx1067.
    1. Cotto K.C., Wagner A.H., Feng Y.-Y., Kiwala S., Coffman A.C., Spies G., Wollam A., Spies N.C., Griffith O.L., Griffith M. DGIdb 3.0: A redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 2018;46:D1068–D1073. doi: 10.1093/nar/gkx1143.
    1. Lee D.-K., Long N.P., Jung J., Kim T.J., Na E., Kang Y.P., Kwon S.W., Jang J. Integrative lipidomic and transcriptomic analysis of X-linked adrenoleukodystrophy reveals distinct lipidome signatures between adrenomyeloneuropathy and childhood cerebral adrenoleukodystrophy. Biochem. Biophys. Res. Commun. 2018 doi: 10.1016/j.bbrc.2018.11.123.
    1. Long N.P., Park S., Anh N.H., Min J.E., Yoon S.J., Kim H.M., Nghi T.D., Lim D.K., Park J.H., Lim J., et al. Efficacy of Integrating a Novel 16-Gene Biomarker Panel and Intelligence Classifiers for Differential Diagnosis of Rheumatoid Arthritis and Osteoarthritis. J. Clin. Med. 2019;8:50. doi: 10.3390/jcm8010050.

Source: PubMed

3
Suscribir