Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives

Daniel L Plotkin, Michael D Roberts, Cody T Haun, Brad J Schoenfeld, Daniel L Plotkin, Michael D Roberts, Cody T Haun, Brad J Schoenfeld

Abstract

Human muscle fibers are generally classified by myosin heavy chain (MHC) isoforms characterized by slow to fast contractile speeds. Type I, or slow-twitch fibers, are seen in high abundance in elite endurance athletes, such as long-distance runners and cyclists. Alternatively, fast-twitch IIa and IIx fibers are abundant in elite power athletes, such as weightlifters and sprinters. While cross-sectional comparisons have shown marked differences between athletes, longitudinal data have not clearly converged on patterns in fiber type shifts over time, particularly between slow and fast fibers. However, not all fiber type identification techniques are created equal and, thus, may limit interpretation. Hybrid fibers, which express more than one MHC type (I/IIa, IIa/IIx, I/IIa/IIx), may make up a significant proportion of fibers. The measurement of the distribution of fibers would necessitate the ability to identify hybrid fibers, which is best done through single fiber analysis. Current evidence using the most appropriate techniques suggests a clear ability of fibers to shift between hybrid and pure fibers as well as between slow and fast fiber types. The context and extent to which this occurs, along with the limitations of current evidence, are discussed herein.

Keywords: endurance training; fast-twitch fibers; slow-twitch fibers; strength training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Summary of techniques. Legend: (a) fiber type estimation based on biopsied homogenates: a biopsy is obtained, the tissue is homogenized in specialized buffers and prepped for electrophoresis, and the gel is stained post-electrophoresis to visualize the percentage of each myosin isoform band. (b) singe fiber analysis: a biopsy is obtained, the tissue is teased apart under a stereoscope in a physiological digestion buffer, every single fiber is placed in a tube and homogenized, and electrophoresis is performed with back-end gel staining; this allows for the confident detection of hybrid fibers (example being “fiber iii”). (c) immunohistochemistry: a biopsy is obtained, the tissue is slow-frozen in a cryomold (or on cork) using freezing media, the frozen tissue is sectioned onto microscope slides using a cryostat, primary antibody solutions against various myosin isoforms are pipetted onto the slide, secondary antibody solutions against the primary antibodies are pipetted onto the slide, and the slide is mounted and imaged on a fluorescent microscope. Note, this image was generated using BioRender.com, and the fluorescent image is from the laboratory of MDR.

References

    1. Smerdu V., Karsch-Mizrachi I., Campione M., Leinwand L., Schiaffino S. Type IIx Myosin Heavy Chain Transcripts Are Expressed in Type IIb Fibers of Human Skeletal Muscle. Am. J. Physiol. 1994;267:C1723–C1728. doi: 10.1152/ajpcell.1994.267.6.C1723.
    1. Tihanyi J., Apor P., Fekete G. Force-Velocity-Power Characteristics and Fiber Composition in Human Knee Extensor Muscles. Eur. J. Appl. Physiol. Occup. Physiol. 1982;48:331–343. doi: 10.1007/BF00430223.
    1. Tesch P.A., Karlsson J. Muscle Fiber Types and Size in Trained and Untrained Muscles of Elite Athletes. J. Appl. Physiol. (1985) 1985;59:1716–1720. doi: 10.1152/jappl.1985.59.6.1716.
    1. Serrano N., Colenso-Semple L.M., Lazauskus K.K., Siu J.W., Bagley J.R., Lockie R.G., Costa P.B., Galpin A.J. Extraordinary Fast-Twitch Fiber Abundance in Elite Weightlifters. PLoS ONE. 2019;14:e0207975. doi: 10.1371/journal.pone.0207975.
    1. Trappe S., Luden N., Minchev K., Raue U., Jemiolo B., Trappe T.A. Skeletal Muscle Signature of a Champion Sprint Runner. J. Appl. Physiol. (1985) 2015;118:1460–1466. doi: 10.1152/japplphysiol.00037.2015.
    1. Larson L., Lioy J., Johnson J., Medler S. Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development. J. Histochem. Cytochem. 2019;67:891–900. doi: 10.1369/0022155419876421.
    1. Roberts M.D., Dalbo V.J., Sunderland K.L., Kerksick C.M. Electrophoretic Separation of Myosin Heavy Chain Isoforms Using a Modified Mini Gel System. J. Strength Cond. Res. 2012;26:3461–3468. doi: 10.1519/JSC.0b013e318270fcab.
    1. Medler S. Mixing It up: The Biological Significance of Hybrid Skeletal Muscle Fibers. J. Exp. Biol. 2019;222:jeb200832. doi: 10.1242/jeb.200832.
    1. Quiat D., Voelker K.A., Pei J., Grishin N.V., Grange R.W., Bassel-Duby R., Olson E.N. Concerted Regulation of Myofiber-Specific Gene Expression and Muscle Performance by the Transcriptional Repressor Sox6. Proc. Natl. Acad. Sci. USA. 2011;108:10196–10201. doi: 10.1073/pnas.1107413108.
    1. Roberts M.D., Brown J.D., Company J.M., Oberle L.P., Heese A.J., Toedebusch R.G., Wells K.D., Cruthirds C.L., Knouse J.A., Ferreira J.A., et al. Phenotypic and Molecular Differences between Rats Selectively Bred to Voluntarily Run High vs. Low Nightly Distances. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013;304:R1024–R1035. doi: 10.1152/ajpregu.00581.2012.
    1. Müntener M. Variable PH Dependence of the Myosin-ATPase in Different Muscles of the Rat. Histochemistry. 1979;62:299–304. doi: 10.1007/BF00508358.
    1. Tobias I.S., Galpin A.J. Moving Human Muscle Physiology Research Forward: An Evaluation of Fiber Type-Specific Protein Research Methodologies. Am. J. Physiol.-Cell Physiol. 2020;319:C858–C876. doi: 10.1152/ajpcell.00107.2020.
    1. Adams G.R., Hather B.M., Baldwin K.M., Dudley G.A. Skeletal Muscle Myosin Heavy Chain Composition and Resistance Training. J. Appl. Physiol. (1985) 1993;74:911–915. doi: 10.1152/jappl.1993.74.2.911.
    1. Carroll T.J., Abernethy P.J., Logan P.A., Barber M., McEniery M.T. Resistance Training Frequency: Strength and Myosin Heavy Chain Responses to Two and Three Bouts per Week. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:270–275. doi: 10.1007/s004210050419.
    1. Liu Y., Schlumberger A., Wirth K., Schmidtbleicher D., Steinacker J.M. Different Effects on Human Skeletal Myosin Heavy Chain Isoform Expression: Strength vs. Combination Training. J. Appl. Physiol. (1985) 2003;94:2282–2288. doi: 10.1152/japplphysiol.00830.2002.
    1. Malisoux L., Francaux M., Nielens H., Theisen D. Stretch-Shortening Cycle Exercises: An Effective Training Paradigm to Enhance Power Output of Human Single Muscle Fibers. J. Appl. Physiol. 2006;100:771–779. doi: 10.1152/japplphysiol.01027.2005.
    1. Andersen J.L., Klitgaard H., Saltin B. Myosin Heavy Chain Isoforms in Single Fibres from m. Vastus Lateralis of Sprinters: Influence of Training. Acta Physiol. Scand. 1994;151:135–142. doi: 10.1111/j.1748-1716.1994.tb09730.x.
    1. D’Antona G., Lanfranconi F., Pellegrino M.A., Brocca L., Adami R., Rossi R., Moro G., Miotti D., Canepari M., Bottinelli R. Skeletal Muscle Hypertrophy and Structure and Function of Skeletal Muscle Fibres in Male Body Builders. J. Physiol. 2006;570:611–627. doi: 10.1113/jphysiol.2005.101642.
    1. Gehlert S., Weber S., Weidmann B., Gutsche K., Platen P., Graf C., Kappes-Horn K., Bloch W. Cycling Exercise-Induced Myofiber Transitions in Skeletal Muscle Depend on Basal Fiber Type Distribution. Eur. J. Appl. Physiol. 2012;112:2393–2402. doi: 10.1007/s00421-011-2209-4.
    1. Luden N., Hayes E., Minchev K., Louis E., Raue U., Conley T., Trappe S. Skeletal Muscle Plasticity with Marathon Training in Novice Runners. Scand. J. Med. Sci. Sports. 2012;22:662–670. doi: 10.1111/j.1600-0838.2011.01305.x.
    1. Vandervoort A.A., McComas A.J. A Comparison of the Contractile Properties of the Human Gastrocnemius and Soleus Muscles. Eur. J. Appl. Physiol. Occup. Physiol. 1983;51:435–440. doi: 10.1007/BF00429079.
    1. Gallagher P., Trappe S., Harber M., Creer A., Mazzetti S., Trappe T., Alkner B., Tesch P. Effects of 84-Days of Bedrest and Resistance Training on Single Muscle Fibre Myosin Heavy Chain Distribution in Human Vastus Lateralis and Soleus Muscles. Acta Physiol. Scand. 2005;185:61–69. doi: 10.1111/j.1365-201X.2005.01457.x.
    1. Howald H., Hoppeler H., Claassen H., Mathieu O., Straub R. Influences of Endurance Training on the Ultrastructural Composition of the Different Muscle Fiber Types in Humans. Pflug. Arch. 1985;403:369–376. doi: 10.1007/BF00589248.
    1. Jansson E., Sjödin B., Tesch P. Changes in Muscle Fibre Type Distribution in Man after Physical Training: A Sign of Fibre Type Transformation? Acta Physiol. Scand. 1978;104:235–237. doi: 10.1111/j.1748-1716.1978.tb06272.x.
    1. Trappe S., Harber M., Creer A., Gallagher P., Slivka D., Minchev K., Whitsett D. Single Muscle Fiber Adaptations with Marathon Training. J. Appl. Physiol. (1985) 2006;101:721–727. doi: 10.1152/japplphysiol.01595.2005.
    1. Costill D.L., Daniels J., Evans W., Fink W., Krahenbuhl G., Saltin B. Skeletal Muscle Enzymes and Fiber Composition in Male and Female Track Athletes. J. Appl. Physiol. 1976;40:149–154. doi: 10.1152/jappl.1976.40.2.149.
    1. Costill D.L., Fink W.J., Pollock M.L. Muscle Fiber Composition and Enzyme Activities of Elite Distance Runners. Med. Sci. Sports. 1976;8:96–100. doi: 10.1249/00005768-197600820-00015.
    1. Fink W.J., Costill D.L., Pollock M.L. Submaximal and Maximal Working Capacity of Elite Distance Runners. Part II. Muscle Fiber Composition and Enzyme Activities. Ann. N. Y. Acad. Sci. 1977;301:323–327. doi: 10.1111/j.1749-6632.1977.tb38210.x.
    1. Vikne H., Strøm V., Pripp A.H., Gjøvaag T. Human Skeletal Muscle Fiber Type Percentage and Area after Reduced Muscle Use: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sports. 2020;30:1298–1317. doi: 10.1111/sms.13675.
    1. Andersen L.L., Andersen J.L., Magnusson S.P., Suetta C., Madsen J.L., Christensen L.R., Aagaard P. Changes in the Human Muscle Force-Velocity Relationship in Response to Resistance Training and Subsequent Detraining. J. Appl. Physiol. 2005;99:87–94. doi: 10.1152/japplphysiol.00091.2005.
    1. Houmard J.A., Scott B.K., Justice C.L., Chenier T.C. The Effects of Taper on Performance in Distance Runners. Med. Sci. Sports Exerc. 1994;26:624–631. doi: 10.1249/00005768-199405000-00016.
    1. Murach K.A., Bagley J.R. Less Is More: The Physiological Basis for Tapering in Endurance, Strength, and Power Athletes. Sports. 2015;3:209–218. doi: 10.3390/sports3030209.
    1. Buller A.J., Eccles J.C., Eccles R.M. Interactions between Motoneurones and Muscles in Respect of the Characteristic Speeds of Their Responses. J. Physiol. 1960;150:417–439. doi: 10.1113/jphysiol.1960.sp006395.
    1. Rhee H.S., Hoh J.F.Y. Immunohistochemical Analysis of the Effects of Cross-Innervation of Murine Thyroarytenoid and Sternohyoid Muscles. J. Histochem. Cytochem. 2010;58:1057–1065. doi: 10.1369/jhc.2010.956706.
    1. Chin E.R., Olson E.N., Richardson J.A., Yang Q., Humphries C., Shelton J.M., Wu H., Zhu W., Bassel-Duby R., Williams R.S. A Calcineurin-Dependent Transcriptional Pathway Controls Skeletal Muscle Fiber Type. Genes Dev. 1998;12:2499–2509. doi: 10.1101/gad.12.16.2499.
    1. McCullagh K.J.A., Calabria E., Pallafacchina G., Ciciliot S., Serrano A.L., Argentini C., Kalhovde J.M., Lømo T., Schiaffino S. NFAT Is a Nerve Activity Sensor in Skeletal Muscle and Controls Activity-Dependent Myosin Switching. Proc. Natl. Acad. Sci. USA. 2004;101:10590–10595. doi: 10.1073/pnas.0308035101.
    1. Serrano A.L., Murgia M., Pallafacchina G., Calabria E., Coniglio P., Lømo T., Schiaffino S. Calcineurin Controls Nerve Activity-Dependent Specification of Slow Skeletal Muscle Fibers but Not Muscle Growth. Proc. Natl. Acad. Sci. USA. 2001;98:13108–13113. doi: 10.1073/pnas.231148598.
    1. Röckl K.S.C., Hirshman M.F., Brandauer J., Fujii N., Witters L.A., Goodyear L.J. Skeletal Muscle Adaptation to Exercise Training: AMP-Activated Protein Kinase Mediates Muscle Fiber Type Shift. Diabetes. 2007;56:2062–2069. doi: 10.2337/db07-0255.
    1. Chen Z.-P., Stephens T.J., Murthy S., Canny B.J., Hargreaves M., Witters L.A., Kemp B.E., McConell G.K. Effect of Exercise Intensity on Skeletal Muscle AMPK Signaling in Humans. Diabetes. 2003;52:2205–2212. doi: 10.2337/diabetes.52.9.2205.
    1. Dreyer H.C., Fujita S., Cadenas J.G., Chinkes D.L., Volpi E., Rasmussen B.B. Resistance Exercise Increases AMPK Activity and Reduces 4E-BP1 Phosphorylation and Protein Synthesis in Human Skeletal Muscle. J. Physiol. 2006;576:613–624. doi: 10.1113/jphysiol.2006.113175.
    1. Chen X., Guo Y., Jia G., Liu G., Zhao H., Huang Z. Arginine Promotes Skeletal Muscle Fiber Type Transformation from Fast-Twitch to Slow-Twitch via Sirt1/AMPK Pathway. J. Nutr. Biochem. 2018;61:155–162. doi: 10.1016/j.jnutbio.2018.08.007.
    1. Flück M., Kramer M., Fitze D.P., Kasper S., Franchi M.V., Valdivieso P. Cellular Aspects of Muscle Specialization Demonstrate Genotype–Phenotype Interaction Effects in Athletes. Front. Physiol. 2019;10:526. doi: 10.3389/fphys.2019.00526.
    1. Simoneau J.A., Bouchard C. Genetic Determinism of Fiber Type Proportion in Human Skeletal Muscle. FASEB J. 1995;9:1091–1095. doi: 10.1096/fasebj.9.11.7649409.
    1. Vincent B., De Bock K., Ramaekers M., Van den Eede E., Van Leemputte M., Hespel P., Thomis M.A. ACTN3 (R577X) Genotype Is Associated with Fiber Type Distribution. Physiol. Genom. 2007;32:58–63. doi: 10.1152/physiolgenomics.00173.2007.
    1. Kumagai H., Tobina T., Ichinoseki-Sekine N., Kakigi R., Tsuzuki T., Zempo H., Shiose K., Yoshimura E., Kumahara H., Ayabe M., et al. Role of Selected Polymorphisms in Determining Muscle Fiber Composition in Japanese Men and Women. J. Appl. Physiol. (1985) 2018;124:1377–1384. doi: 10.1152/japplphysiol.00953.2017.
    1. Borisov O., Semenova E., Miyamoto-Mikami E., Murakami H., Zempo H., Kostryukova E., Kulemin N., Larin A., Miyachi M., Ospanova E., et al. FEBS Open Bio. Wiley; Hoboken, NJ, USA: 2018. A Genome-Wide Association Study of Muscle Fibers Composition Revealed 5 SNPs Associated with Slow-Twitch Fibers.
    1. Bagley J., Murach K., Trappe S. Microgravity-Induced Fiber Type Shift in Human Skeletal Muscle. Gravit. Space Biol. 2012;26:34–40.
    1. Hua N., Takahashi H., Yee G.M., Kitajima Y., Katagiri S., Kojima M., Anzai K., Eguchi Y., Hamilton J.A. Influence of Muscle Fiber Type Composition on Early Fat Accumulation under High-Fat Diet Challenge. PLoS ONE. 2017;12:e0182430. doi: 10.1371/journal.pone.0182430.
    1. Korfage J.A.M., Van Eijden T.M.G.J. Regional Differences in Fibre Type Composition in the Human Temporalis Muscle. J. Anat. 1999;194:355–362. doi: 10.1046/j.1469-7580.1999.19430355.x.
    1. Horwath O., Envall H., Röja J., Emanuelsson E.B., Sanz G., Ekblom B., Apró W., Moberg M. Variablity in Vastus Lateralis Fiber Type Distribution, Fiber Size and Myonuclear Content along and between the Legs. J. Appl. Physiol. 2021 doi: 10.1152/japplphysiol.00053.2021.

Source: PubMed

3
Suscribir