Effectiveness and Safety of Rivaroxaban 15 or 20 mg Versus Vitamin K Antagonists in Nonvalvular Atrial Fibrillation

Patrick Blin, Laurent Fauchier, Caroline Dureau-Pournin, Frédéric Sacher, Jean Dallongeville, Marie-Agnès Bernard, Regis Lassalle, Cécile Droz-Perroteau, Nicholas Moore, Patrick Blin, Laurent Fauchier, Caroline Dureau-Pournin, Frédéric Sacher, Jean Dallongeville, Marie-Agnès Bernard, Regis Lassalle, Cécile Droz-Perroteau, Nicholas Moore

Abstract

Background and Purpose- We compared the 1-year safety and effectiveness of rivaroxaban 15 mg (R15) or rivaroxaban 20 mg (R20) to vitamin K antagonists (VKAs) in patients with nonvalvular atrial fibrillation. Methods- New user cohort study of patients dispensed R15 or R20 versus VKA in 2013 or 2014 for nonvalvular atrial fibrillation, followed 1 year in the French Système National des Données de Santé (66 million people). R15 and R20 users were matched 1:1 with VKA users on sex, age, date of first drug dispensing, and high-dimensional propensity score. Hazard ratios (95% CIs) for stroke and systemic embolism, major bleeding, and death were computed using Cox proportional hazards or models by Fine and Gray during exposure. Results- In 31 171 matched R20 and VKA, mean age, 71; 62% men; 76% with CHA2DS2-VASc ≥2; 5% HAS-BLED >3 (hypertension, abnormal renal and liver function, stroke, bleeding, labile INR, elderly, drugs or alcohol); incidence rates for stroke and systemic embolism were 1.5% and 1.9% (hazard ratio, 0.79 [0.69-0.90]); major bleeding, 1.5% and 2.2% (0.67 [0.59-0.77]); death, 3.9% and 5.8% (0.67 [0.61-0.73]). In 23 314 matched R15 and VKA patients, mean age, 80; 47% men; 93% with CHA2DS2-VASc ≥2 and 9% with HAS-BLED >3; incidence rates of stroke and systemic embolism were 2.3% and 2.1% (1.05 [0.92-1.21]); major bleeding, 2.4% and 2.9% (0.84 [0.74-0.96]); death, 9.1% and 10.8% (0.85 [0.79-0.90]). Numbers needed to treat to observe one fewer death (NNT) were 46 for R15 and 61 for R20. Conclusions- In real life in France over 2013 to 2015, R15 and R20 were at least as effective and safer than VKA. Clinical Trial Registration- URL: http://www.encepp.eu. Unique identifier: EUPAS14567.

Keywords: France; atrial fibrillation; humans; pharmacoepidemiology; rivaroxaban.

Figures

Figure 1.
Figure 1.
Patient disposition. DOAC indicates direct-acting oral anticoagulant; NVAF, nonvalvular atrial fibrillation; and VKA, vitamin K antagonist.
Figure 2.
Figure 2.
Effectiveness and safety outcomes in rivaroxaban 20 mg (R20) vs vitamin K antagonist (VKA) patients: forest plots. HR indicates hazard ratio.
Figure 3.
Figure 3.
Effectiveness and safety outcomes in rivaroxaban 15 mg (R15) vs vitamin K antagonist (VKA) patients: forest plots. HR indicates hazard ratio.

References

    1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. Arch Intern Med. 1987;147:1561–1564.
    1. Aguilar MI, Hart R. Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2005:CD001927.
    1. Goto S, Bhatt DL, Röther J, Alberts M, Hill MD, Ikeda Y, et al. REACH Registry Investigators. Prevalence, clinical profile, and cardiovascular outcomes of atrial fibrillation patients with atherothrombosis. Am Heart J. 2008;156:855.e2–863, 863.e2. doi: 10.1016/j.ahj.2008.06.029.
    1. Blin P, Dureau-Pournin C, Lassalle R, Abouelfath A, Droz-Perroteau C, Moore N. A population database study of outcomes associated with vitamin K antagonists in atrial fibrillation before DOAC. Br J Clin Pharmacol. 2016;81:569–578. doi: 10.1111/bcp.12807.
    1. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–19. doi: 10.1136/bmj.329.7456.15.
    1. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383:955–962. doi: 10.1016/S0140-6736(13)62343-0.
    1. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–891. doi: 10.1056/NEJMoa1009638.
    1. Steg PG, López-Sendón J, Lopez de Sa E, Goodman SG, Gore JM, Anderson FA, Jr, et al. GRACE Investigators. External validity of clinical trials in acute myocardial infarction. Arch Intern Med. 2007;167:68–73. doi: 10.1001/archinte.167.1.68.
    1. Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365:82–93. doi: 10.1016/S0140-6736(04)17670-8.
    1. Beyer-Westendorf J, Büller H. External and internal validity of open label or double-blind trials in oral anticoagulation: better, worse or just different? J Thromb Haemost. 2011;9:2153–2158. doi: 10.1111/j.1538-7836.2011.04507.x.
    1. Staerk L, Gerds TA, Lip GYH, Ozenne B, Bonde AN, Lamberts M, et al. Standard and reduced doses of dabigatran, rivaroxaban and apixaban for stroke prevention in atrial fibrillation: a nationwide cohort study. J Intern Med. 2018;283:45–55. doi: 10.1111/joim.12683.
    1. Lin YC, Chien SC, Hsieh YC, Shih CM, Lin FY, Tsao NW, et al. Effectiveness and safety of standard- and low-dose rivaroxaban in asians with atrial fibrillation. J Am Coll Cardiol. 2018;72:477–485. doi: 10.1016/j.jacc.2018.04.084.
    1. Lee HF, Chan YH, Tu HT, Kuo CT, Yeh YH, Chang SH, et al. The effectiveness and safety of low-dose rivaroxaban in Asians with non-valvular atrial fibrillation. Int J Cardiol. 2018;261:78–83. doi: 10.1016/j.ijcard.2018.03.063.
    1. Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: powerful tools for pharmacoepidemiology. Pharmacoepidemiol Drug Saf. 2017;26:954–962. doi: 10.1002/pds.4233.
    1. Blin P, Dureau-Pournin C, Cottin Y, Bénichou J, Mismetti P, Abouelfath A, et al. Comparative effectiveness and safety of standard or reduced dose dabigatran vs. rivaroxaban in nonvalvular atrial fibrillation. Clin Pharmacol Ther. 2019;105:1439–1455. doi: 10.1002/cpt.1318.
    1. Blin P, Dureau-Pournin C, Cottin Y, Bénichou J, Mismetti P, Abouelfath A, et al. Effectiveness and safety of 110 or 150 mg dabigatran vs. vitamin K antagonists in nonvalvular atrial fibrillation. Br J Clin Pharmacol. 2019;85:432–441. doi: 10.1111/bcp.13815.
    1. Maura G, Billionnet C, Alla F, Gagne JJ, Pariente A. Comparison of treatment persistence with dabigatran or rivaroxaban versus vitamin k antagonist oral anticoagulants in atrial fibrillation patients: a competing risk analysis in the french national health care databases. Pharmacotherapy. 2018;38:6–18. doi: 10.1002/phar.2046.
    1. Maura G, Blotière PO, Bouillon K, Billionnet C, Ricordeau P, Alla F, et al. Comparison of the short-term risk of bleeding and arterial thromboembolic events in nonvalvular atrial fibrillation patients newly treated with dabigatran or rivaroxaban versus vitamin K antagonists: a French nationwide propensity-matched cohort study. Circulation. 2015;132:1252–1260. doi: 10.1161/CIRCULATIONAHA.115.015710.
    1. Gilleron V, Gasnier-Duparc N, Hebbrecht G. Certification des comptes: une incitation à la traçabilité des processus de contrôle. Revue Hospitaliere de France. 2018;582:42–46.
    1. Giroud M, Hommel M, Benzenine E, Fauconnier J, Béjot Y, Quantin C FRESCO Study. Positive predictive value of french hospitalization discharge codes for stroke and transient ischemic attack. Eur Neurol. 2015;74:92–99. doi: 10.1159/000438859.
    1. Bezin J, Girodet PO, Rambelomanana S, Touya M, Ferreira P, Gilleron V, et al. Choice of ICD-10 codes for the identification of acute coronary syndrome in the French hospitalization database. Fundam Clin Pharmacol. 2015;29:586–591. doi: 10.1111/fcp.12143.
    1. Bosco-Lévy P, Duret S, Picard F, Dos Santos P, Puymirat E, Gilleron V, et al. Diagnostic accuracy of the International Classification of Diseases, Tenth Revision, codes of heart failure in an administrative database. Pharmacoepidemiol Drug Saf. 2019;28:194–200. doi: 10.1002/pds.4690.
    1. Bannay A, Chaignot C, Blotière PO, Basson M, Weill A, Ricordeau P, et al. The best use of the charlson comorbidity index with electronic health care database to predict mortality. Med Care. 2016;54:188–194. doi: 10.1097/MLR.0000000000000471.
    1. Schulman S, Kearon C Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3:692–694. doi: 10.1111/j.1538-7836.2005.01204.x.
    1. Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21. doi: 10.1214/09-STS313.
    1. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20:512–522. doi: 10.1097/EDE.0b013e3181a663cc.
    1. Schneeweiss S, Eddings W, Glynn RJ, Patorno E, Rassen J, Franklin JM. Variable selection for confounding adjustment in high-dimensional covariate spaces when analyzing healthcare databases. Epidemiology. 2017;28:237–248. doi: 10.1097/EDE.0000000000000581.
    1. Garbe E, Kloss S, Suling M, Pigeot I, Schneeweiss S. High-dimensional versus conventional propensity scores in a comparative effectiveness study of coxibs and reduced upper gastrointestinal complications. Eur J Clin Pharmacol. 2013;69:549–557. doi: 10.1007/s00228-012-1334-2.
    1. Rassen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf. 2012;21(suppl 1):41–49. doi: 10.1002/pds.2328.
    1. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083–3107. doi: 10.1002/sim.3697.
    1. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
    1. Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011;173:1404–1413. doi: 10.1093/aje/kwr001.
    1. Blin P, Dureau-Pournin C, Lassalle R, Jové J, Thomas-Delecourt F, Droz-Perroteau C, et al. Outcomes in patients after myocardial infarction similar to those of the PEGASUS-TIMI 54 trial: a cohort study in the French national claims database. Br J Clin Pharmacol. 2017;83:2056–2065. doi: 10.1111/bcp.13291.
    1. Bouillon K, Bertrand M, Maura G, Blotière PO, Ricordeau P, Zureik M. Risk of bleeding and arterial thromboembolism in patients with non-valvular atrial fibrillation either maintained on a vitamin K antagonist or switched to a non-vitamin K-antagonist oral anticoagulant: a retrospective, matched-cohort study. Lancet Haematol. 2015;2:e150–e159. doi: 10.1016/S2352-3026(15)00027-7.
    1. Larsen TB, Skjøth F, Nielsen PB, Kjældgaard JN, Lip GY. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ. 2016;353:i3189. doi: 10.1136/bmj.i3189.
    1. Nielsen PB, Skjøth F, Søgaard M, Kjældgaard JN, Lip GY, Larsen TB. Effectiveness and safety of reduced dose non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ. 2017;356:j510. doi: 10.1136/bmj.j510.
    1. Chan YH, See LC, Tu HT, Yeh YH, Chang SH, Wu LS, et al. Efficacy and safety of apixaban, dabigatran, rivaroxaban, and warfarin in asians with nonvalvular atrial fibrillation. J Am Heart Assoc. 2018;7:e008150.
    1. Hernandez I, Zhang Y, Saba S. Comparison of the effectiveness and safety of apixaban, dabigatran, rivaroxaban, and warfarin in newly diagnosed atrial fibrillation. Am J Cardiol. 2017;120:1813–1819. doi: 10.1016/j.amjcard.2017.07.092.
    1. Coleman CI, Peacock WF, Bunz TJ, Alberts MJ. Effectiveness and safety of apixaban, dabigatran, and rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and previous stroke or transient ischemic attack. Stroke. 2017;48:2142–2149. doi: 10.1161/STROKEAHA.117.017474.
    1. Yao X, Abraham NS, Sangaralingham LR, Bellolio MF, McBane RD, Shah ND, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016;5:e003725.
    1. Andersson NW, Svanström H, Lund M, Pasternak B, Melbye M. Comparative effectiveness and safety of apixaban, dabigatran, and rivaroxaban in patients with non-valvular atrial fibrillation. Int J Cardiol. 2018;268:113–119. doi: 10.1016/j.ijcard.2018.03.047.
    1. Själander S, Sjögren V, Renlund H, Norrving B, Själander A. Dabigatran, rivaroxaban and apixaban vs. high TTR warfarin in atrial fibrillation. Thromb Res. 2018;167:113–118. doi: 10.1016/j.thromres.2018.05.022.
    1. Martinez BK, Sood NA, Bunz TJ, Coleman CI. Effectiveness and safety of apixaban, dabigatran, and rivaroxaban versus warfarin in frail patients with nonvalvular atrial fibrillation. J Am Heart Assoc. 2018;7:e008643.
    1. Yao X, Shah ND, Sangaralingham LR, Gersh BJ, Noseworthy PA. Non-vitamin K antagonist oral anticoagulant dosing in patients with atrial fibrillation and renal dysfunction. J Am Coll Cardiol. 2017;69:2779–2790. doi: 10.1016/j.jacc.2017.03.600.

Source: PubMed

3
Suscribir