Effectiveness of Extracorporeal Shockwave Therapy on Controlling Spasticity in Cerebral Palsy Patients: A Meta-Analysis of Timing of Outcome Measurement

Min Cheol Chang, You Jin Choo, Sang Gyu Kwak, Kiyeun Nam, Sae Yoon Kim, Hee Jin Lee, Soyoung Kwak, Min Cheol Chang, You Jin Choo, Sang Gyu Kwak, Kiyeun Nam, Sae Yoon Kim, Hee Jin Lee, Soyoung Kwak

Abstract

Extracorporeal shockwave therapy (ESWT) has been suggested as an alternative treatment for reducing spasticity in patients with cerebral palsy (CP). However, the duration of its effect was rarely known. A meta-analysis was performed to investigate the effectiveness of ESWT at controlling spasticity in patients with CP according to the follow-up period. We included studies in which ESWT was used to manage spasticity in patients with CP, and the effect was compared with that in a control group. Finally, three studies were included. In the meta-analysis, spasticity, measured using the modified Ashworth scale (MAS), was significantly reduced after ESWT compared with that in the control group; however, it was sustained for only 1 month. After ESWT, significant increases in passive ankle range of motion (ROM) and plantar surface area in the standing position were observed compared with those in the control group and sustained for up to 3 months. Although spasticity measured using MAS was significantly reduced for only 1 month, improvement in spasticity-associated symptoms, such as ankle ROM and plantar surface area contacting the ground, persisted for over 3 months. ESWT appears to be a useful and effective therapeutic option for managing spasticity in patients with CP.

Keywords: cerebral palsy; extracorporeal shockwave therapy; meta-analysis; modified ashworth scale; plantar surface area; range of motion.

Conflict of interest statement

The authors participated in this study report no conflicts of interest. The funders had no role in the study design; data collection, data analyses, data interpretation, drift of the manuscript, or decision to publish the results.

Figures

Figure 1
Figure 1
Flowchart showing search result selection.
Figure 2
Figure 2
Changes in modified Ashworth scale score after extracorporeal shockwave therapy [25,27,29].
Figure 3
Figure 3
Changes in ankle range of motion after extracorporeal shockwave therapy [25,27,29].
Figure 4
Figure 4
Changes in plantar surface area contacting the ground during standing after extracorporeal shockwave therapy [25,27,29].
Figure 5
Figure 5
Graphic funnel plots of differences in modified Ashworth scale scores (A) and ankle range of motion changes (B) at 1 month after extracorporeal shockwave therapy.

References

    1. Sadowska M., Sarecka-Hujar B., Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020;16:1505–1518. doi: 10.2147/NDT.S235165.
    1. Dursun N., Gokbel T., Akarsu M., Bonikowski M., Pyrzanowska W., Dursun E. Intermittent serial casting for wrist flexion deformity in children with spastic cerebral palsy: A randomized controlled trial. Dev. Med. Child Neurol. 2021;63:743–747.
    1. Krigger K.W. Cerebral palsy: An overview. Am. Fam Physician. 2006;73:91–100.
    1. Shamsoddini A., Amirsalari S., Hollisaz M.T., Rahimnia A., KhatibiAghda A. Management of spasticity in children with cerebral palsy. Iran. J. Pediatr. 2014;24:345–351.
    1. Tuzson A.E., Granta K.P., Abel M.F. Spastic velocity threshold constrains functional performance in cerebral palsy. Arch. Phys. Med. Rehabil. 2003;84:1363–1368.
    1. Østensjø S., Garlberg E.B., Vøllestad N.K. Motor impairments in young children with cerebral palsy: Relationship to gross motor function and everyday activities. Dev. Med. Child Neurol. 2004;46:580–589. doi: 10.1111/j.1469-8749.2004.tb01021.x.
    1. Ali M.S. Does spasticity affect the postural stability and quality of life of children with cerebral palsy? J. Taibah Univ. Med. Sci. 2021;16:761–766. doi: 10.1016/j.jtumed.2021.04.011.
    1. Awan W.A., Masood T. Role Of Stretching Exercises In The Management Of Constipation In Spastic Cerebral Palsy. J. Ayub Med. Coll. Abbottabad. 2016;28:798–801.
    1. Bosques G., Martin R., McGee L., Sadowsky C. Does therapeutic electrical stimulation improve function in children with disabilities? A comprehensive literature review. J. Pediatr. Rehabil. Med. 2016;9:83–99.
    1. Joanna M., Magdalena S., Katarzyna B.M., Daniel S., Ewa L.D. The Utility of Gait Deviation Index (GDI) and Gait Variability Index (GVI) in Detecting Gait Changes in Spastic Hemiplegic Cerebral Palsy Children Using Ankle-Foot Orthoses (AFO) Children. 2020;7:149.
    1. Theis N., Korff T., Mohagheghi A.A. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy? Clin. Biomech. 2015;30:1071–1076. doi: 10.1016/j.clinbiomech.2015.09.004.
    1. Andraweera N.D., Andraweera P.H., Lassi Z.S., Kochiyil V. Effectiveness of Botulinum Toxin A Injection in Managing Mobility-Related Outcomes in Adult Patients With Cerebral Palsy: Systematic Review. Am. J. Phys. Med. Rehabil. 2021;100:851–857.
    1. Kim H., Kolaski K. Is botulinum toxin type A more effective and safer than other treatments for the management of lower limb spasticity in children with cerebral palsy? A Cochrane Review summary with commentary. NeuroRehabilitation. 2021;49:161–164.
    1. Mihai E.E., Popescu M.N., Iliescu A.N., Berteanu M. A systematic review on extracorporeal shock wave therapy and botulinum toxin for spasticity treatment: A comparison on efficacy. Eur. J. Phys. Rehabil. Med. 2022;58:565–574.
    1. Crowner B.E., Torres-Russotto D., Carter A.R., Racette B.A. Systemic weakness after therapeutic injections of botulinum toxin a: A case series and review of the literature. Clin. Neuropharmacol. 2010;33:243–247.
    1. Lee J.Y., Kim S.N., Lee I.S., Jung H., Lee K.S., Koh S.E. Effects of Extracorporeal Shock Wave Therapy on Spasticity in Patients after Brain Injury: A Meta-analysis. J. Phys. Ther. Sci. 2014;26:1641–1647. doi: 10.1589/jpts.26.1641.
    1. Picelli A., Bonetti P., Fontana C., Barausse M., Dambruoso F., Gajofatto F., Girardi P., Manca M., Gimigliano R., Smania N. Is spastic muscle echo intensity related to the response to botuli- num toxin type A in patients with stroke? A cohort study. Arch. Phys. Med. Rehabil. 2012;93:1253–1258. doi: 10.1016/j.apmr.2012.02.005.
    1. Chang M.C. Reduced foot pain after spasticity control with alcohol block in a patient with chronic hemiparetic stroke: A case report. J. Phys. Ther. Sci. 2017;29:767–770.
    1. Chang M.C., Choi G.S., Boudier-Revéret M. Ultrasound-guided ethyl alcohol injection to the deep branch of the ulnar nerve to relieve hand spasticity in stroke patients: A case series. Transl. Neurosci. 2021;12:346–350. doi: 10.1515/tnsci-2020-0188.
    1. Lynn A.K., Turner M., Chambers H.G. Surgical management of spasticity in persons with cerebral palsy. PM&R. 2009;1:834–838.
    1. Dymarek R., Ptaszkowski K., Ptaszkowska L., Kowal M., Sopel M., Taradaj J., Rosińczuk J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults—Current Evidence and Qualitative Systematic Review. Clin. Interv. Aging. 2020;15:9–28. doi: 10.2147/CIA.S221032.
    1. Ryskalin L., Morucci G., Natale G., Soldani P., Gesi M. Molecular Mechanisms Underlying the Pain-Relieving Effects of Extracorporeal Shock Wave Therapy: A Focus on Fascia Nociceptors. Life. 2022;12:743.
    1. Santamato A., Notarnicola A., Panza F., Ranieri M., Micello M.F., Manganotti P., Moretti B., Fortunato F., Filoni S., Fiore P. SBOTE study: Extracorporeal shock wave therapy versus electrical stimulation after botulinum toxin type a injection for poststroke spasticity—A prospective randomized trial. Ultrasound Med. Biol. 2013;39:283–291.
    1. Guo P., Gao F., Zhao T., Sun W., Wang B., Li Z. Positive Effects of Extracorporeal Shock Wave Therapy on Spasticity in Poststroke Patients: A Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2017;26:2470–2476.
    1. Amelio E., Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: A placebo-controlled study. J. Rehabil. Med. 2010;42:339–343. doi: 10.2340/16501977-0522.
    1. El-Shamy S.M., Eid M.A., El-Banna M.F. Effect of extracorporeal shock wave therapy on gait pattern in hemiplegic cerebral palsy: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2014;93:1065–1072.
    1. Gonkova M.I., Ilieva E.M., Ferriero G., Chavdarov I. Effect of radial shock wave therapy on muscle spasticity in children with cerebral palsy. Int. J. Rehabil. Res. 2013;36:284–290. doi: 10.1097/MRR.0b013e328360e51d.
    1. Picelli A., La Marchina E., Gajofatto F., Pontillo A., Vangelista A., Filippini R., Baricich A., Cisari C., Smania N. Sonographic and clinical effects of botulinum toxin Type A combined with extracorporeal shock wave therapy on spastic muscles of children with cerebral palsy. Dev. Neurorehabil. 2017;20:160–164. doi: 10.3109/17518423.2015.1105320.
    1. Vidal X., Morral A., Costa L., Tur M. Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: A randomized, placebo-controlled clinical trial. NeuroRehabilitation. 2011;29:413–419.
    1. Kim H.J., Park J.W., Nam K. Effect of extracorporeal shockwave therapy on muscle spasticity in patients with cerebral palsy: Meta-analysis and systematic review. Eur. J. Phys. Rehabil. Med. 2019;55:761–771.
    1. Chang M.C., Choo Y.J., Kwak S.G., Nam K., Kim S.Y., Lee H.J., Kwak S. Effect of Extracorporeal Shockwave Therapy on Spasticity in Patients with Cerebral Palsy: A Meta-analysis of Timing of Outcome Measurement. International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY), article no. 202280066. [(accessed on 28 January 2023)]. Available online:
    1. Higgins J.P., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010;25:603–605. doi: 10.1007/s10654-010-9491-z.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Erlbaum; Hillsdale, NJ, USA: 1988.
    1. Boulenguez P., Liabeuf S., Bos R., Bras H., Jean-Xavier C., Brocard C., Stil A., Darbon P., Cattaert D., Delpire E., et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 2010;16:302–307. doi: 10.1038/nm.2107.
    1. Gao J., Rubin J.M., Chen J., O’Dell M. Ultrasound Elastography to Assess Botulinum Toxin A Treatment for Post-stroke Spasticity: A Feasibility Study. Ultrasound Med. Biol. 2019;45:1094–1102. doi: 10.1016/j.ultrasmedbio.2018.10.034.
    1. Stecco A., Stecco C., Raghavan P. Peripheral Mechanisms Contributing to Spasticity and Implications for Treatment. Curr. Phys. Med. Rehabil. Rep. 2014;2:121–127. doi: 10.1007/s40141-014-0052-3.
    1. Martínez I.M., Sempere-Rubio N., Navarro O., Faubel R. Effectiveness of Shock Wave Therapy as a Treatment for Spasticity: A Systematic Review. Brain Sci. 2020;11:15.
    1. Wu Y.T., Yu H.K., Chen L.R., Chang C.N., Chen Y.M., Hu G.C. Extracorporeal Shock Waves Versus Botulinum Toxin Type A in the Treatment of Poststroke Upper Limb Spasticity: A Randomized Noninferiority Trial. Arch. Phys. Med. Rehabil. 2018;99:2143–2150. doi: 10.1016/j.apmr.2018.05.035.
    1. Ciampa A.R., de Prati A.C., Amelio E., Cavalieri E., Persichini T., Colasanti M., Musci G., Marlinghaus E., Suzuki H., Mariotto S. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett. 2005;579:6839–6845. doi: 10.1016/j.febslet.2005.11.023.
    1. Zhang X., Yan X., Wang C., Tang T., Chai Y. The dose-effect relationship in extracorporeal shock wave therapy: The optimal parameter for extracorporeal shock wave therapy. J. Surg. Res. 2014;186:484–492.
    1. Kenmoku T., Ochiai N., Ohtori S., Saisu T., Sasho T., Nakagawa K., Iwakura N., Miyagi M., Ishikawa T., Tatsuoka H., et al. Degeneration and recovery of the neuromuscular junction after application of extracorporeal shock wave therapy. J. Orthop. Res. 2012;30:1660–1665. doi: 10.1002/jor.22111.
    1. Mukherjee A., Chakravarty A. Spasticity mechanisms-for the clinician. Front. Neurol. 2010;1:149. doi: 10.3389/fneur.2010.00149.
    1. Wu Y.T., Chang C.N., Chen Y.M., Hu G.C. Comparison of the effect of focused and radial extracorporeal shock waves on spastic equinus in patients with stroke: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2018;54:518–525.
    1. Manganotti P., Amelio E., Guerra C. Shock wave over hand muscles: A neurophysiological study on peripheral conduction nerves in normal subjects. Muscles Ligaments Tendons J. 2012;2:104–107.
    1. Dymarek R., Ptaszkowski K., Słupska L., Halski T., Taradaj J., Rosińczuk J. Effects of extracorporeal shock wave on upper and lower limb spasticity in post-stroke patients: A narrative review. Top. Stroke Rehabil. 2016;23:293–303. doi: 10.1080/10749357.2016.1141492.
    1. Haake M., Böddeker I., Decker T., Buch M., Vogel M., Labek G., Maier M., Loew M., Maier-Boerries O., Fischer J., et al. Side-effects of extracorporeal shock wave therapy (ESWT) in the treatment of tennis elbow. Arch. Orthop. Trauma Surg. 2002;122:222–228.
    1. Roerdink R.L., Dietvorst M., van der Zwaard B., van der Worp H., Zwerver J. Complications of extracorporeal shockwave therapy in plantar fasciitis: Systematic review. Int. J. Surg. 2017;46:133–145.

Source: PubMed

3
Suscribir