Botulinum Toxin a Injection Combined with Radial Extracorporeal Shock Wave Therapy in Children with Spastic Cerebral Palsy: Shear Wave Sonoelastographic Findings in the Medial Gastrocnemius Muscle, Preliminary Study

Dong Rak Kwon, Dae Gil Kwon, Dong Rak Kwon, Dae Gil Kwon

Abstract

Therapeutic strategies to boost the effect of botulinum toxin may lead to some advantages, such as long lasting effects, the injection of lower botulinum toxin dosages, fewer side effects, and lower costs. The aim of this study is to investigate the combined effect of botulinum toxin A (BTA) injection and extracorporeal shock wave therapy (ESWT) for the treatment of spasticity in children with spastic cerebral palsy (CP). Fifteen patients with spastic CP were recruited through a retrospective chart review to clarify what treatment they received. All patients received a BTA injection on gastrocnemius muscle (GCM), and patients in group 1 underwent one ESWT session for the GCM immediately after BTA injection and two consecutive ESWT sessions at weekly intervals. Ankle plantar flexor and the passive range of motion (PROM) of ankle dorsiflexion were measured by a modified Ashworth scale (MAS) before treatment and at 1 and 3 month(s) post-treatment. In group 1, the shear wave velocity (SWV) of GCM was measured. The PROM and MAS in group 1 and 2 before treatment significantly improved at 1 and 3 month(s) after treatment. The change in PROM was significantly different between the two groups at 1 and 3 month(s) after treatment. The SWV before treatment significantly decreased at 1 month and 3 months after treatment in group 1. Our study has shown that the combination of BTA injection and ESWT would be effective at controlling spasticity in children with spastic CP, with sustained improvement at 3 months after treatment.

Keywords: botulinum toxin; cerebral palsy; extracorporeal shock wave; shear wave ultrasound; spasticity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Botulinum toxin A injection at the gastrocnemius (GCM) muscle under sonographic guidance (white arrow: needle). (B) Application of radial extracorporeal shock wave therapy (ESWT) on the GCM of an 87-month-old child with spastic cerebral palsy.
Figure 2
Figure 2
Representative longitudinal acoustic radiation force impulse (ARFI) image of the medial gastrocnemius muscle. (A) B-mode ultrasonography. (B) “Quality map” indicates the quality and reliability of the shear wave measurements. These correspond to the areas where the shear waves with sufficient quality for quantification are shown in green. (C) The shear-wave velocity (2.84 m/s) was measured in the region of interest of the medial gastrocnemius muscle using ARFI imaging.
Figure 3
Figure 3
The flowchart of the study.

References

    1. Borodic G.E., Ferrante R., Pearce L.B., Smith K. Histologic assessment of dose-related diffusion and muscle fiber response after therapeutic botulinum a toxin injections. Mov. Disord. 1994;9:31–39. doi: 10.1002/mds.870090106.
    1. Delgado M.R., Hirtz D.G., Aisen M.L., Ashwal S., Fehlings D.L., McLaughlin J.F., Morrison L., Shrader M.W., Tilton A., Vargusadams J. Practice Parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74:336–343. doi: 10.1212/wnl.0b013e3181cbcd2f.
    1. Kwon D.R., Park G.Y., Kwon J.G. The Change of Intrinsic Stiffness in Gastrocnemius after Intensive Rehabilitation with Botulinum Toxin a Injection in Spastic Diplegic Cerebral Palsy. Ann. Rehabil. Med. 2012;36:400–403. doi: 10.5535/arm.2012.36.3.400.
    1. Park G.-Y., Kwon D.R. Sonoelastographic Evaluation of Medial Gastrocnemius Muscles Intrinsic Stiffness After Rehabilitation Therapy with Botulinum Toxin A Injection in Spastic Cerebral Palsy. Arch. Phys. Med. Rehabil. 2012;93:2085–2089. doi: 10.1016/j.apmr.2012.06.024.
    1. Lee W.-Y., Park G.-Y., Kwon D.R. Comparison of Treatment Effects Between Children with Spastic Cerebral Palsy Under and Over Five Years After Botulinum Toxin Type A Injection. Ann. Rehabil. Med. 2014;38:200–208. doi: 10.5535/arm.2014.38.2.200.
    1. Cosgrove A.P., Corry I.S., Graham H.K. Botulinum toxin in the management of the lower LIMB in cerebral palsy. Dev. Med. Child. Neurol. 1994;36:386–396. doi: 10.1111/j.1469-8749.1994.tb11864.x.
    1. Cosgrove A.P., Graham H.K. Botunum toxin a prevents the development of contractures in the hereditary spastc mouse. Dev. Med. Child. Neurol. 2008;36:379–385. doi: 10.1111/j.1469-8749.1994.tb11863.x.
    1. Kim K., Shin H.-I., Kwon B.S., Kim S.J., Jung I.-Y., Bang M.S. Neuronox versus BOTOX for spastic equinus gait in children with cerebral palsy: A randomized, double-blinded, controlled multicentre clinical trial. Dev. Med. Child. Neurol. 2010;53:239–244. doi: 10.1111/j.1469-8749.2010.03830.x.
    1. Amelio E., Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: A placebo-controlled study. J. Rehabil. Med. 2010;42:339–343. doi: 10.2340/16501977-0522.
    1. Vidal X., Morral A., Costa L., Tur M. Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: A randomized, placebo-controlled clinical trial. NeuroRehabilitation. 2011;29:413–419. doi: 10.3233/NRE-2011-0720.
    1. Park D.-S., Kwon D.R., Park G.-Y., Lee M.Y. Therapeutic Effect of Extracorporeal Shock Wave Therapy According to Treatment Session on Gastrocnemius Muscle Spasticity in Children with Spastic Cerebral Palsy: A Pilot Study. Ann. Rehabil. Med. 2015;39:914–921. doi: 10.5535/arm.2015.39.6.914.
    1. Kim H.-J., Park J.-W., Nam K. Effect of extracorporeal shockwave therapy on muscle spasticity in patients with cerebral palsy: Meta-analysis and systematic review. Eur. J. Phys. Rehabil. Med. 2020;55:761–771. doi: 10.23736/S1973-9087.19.05888-X.
    1. Kudva A., Abraham M.E., Gold J., Patel N.A., Gendreau J.L., Herschman Y., Mammis A. Intrathecal baclofen, selective dorsal rhizotomy, and extracorporeal shockwave therapy for the treatment of spasticity in cerebral palsy: A systematic review. Neurosurg. Rev. 2021;44:3209–3228. doi: 10.1007/s10143-021-01550-0.
    1. Dymarek R., Ptaszkowski K., Ptaszkowska L., Kowal M., Sopel M., Taradaj J., Rosińczuk J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults—Current Evidence and Qualitative Systematic Review. Clin. Interv. Aging. 2020;15:9–28. doi: 10.2147/CIA.S221032.
    1. Guo P., Gao F., Zhao T., Sun W., Wang B., Li Z. Positive Effects of Extracorporeal Shock Wave Therapy on Spasticity in Poststroke Patients: A Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2017;26:2470–2476. doi: 10.1016/j.jstrokecerebrovasdis.2017.08.019.
    1. Manganotti P., Amelio E. Long-Term Effect of Shock Wave Therapy on Upper Limb Hypertonia in Patients Affected by Stroke. Stroke. 2005;36:1967–1971. doi: 10.1161/01.STR.0000177880.06663.5c.
    1. Kisch T., Wuerfel W., Forstmeier V., Liodaki E., Stang F.H., Knobloch K., Mailaender P., Kraemer R. Repetitive shock wave therapy improves muscular microcirculation. J. Surg. Res. 2016;201:440–445. doi: 10.1016/j.jss.2015.11.049.
    1. López-Marín L.M., Rivera A.L., Fernández F., Loske A.M. Shock wave-induced permeabilization of mammalian cells. Phys. Life Rev. 2018;26:1–38. doi: 10.1016/j.plrev.2018.03.001.
    1. Luh J.-J., Huang W.-T., Lin K.-H., Huang Y.-Y., Kuo P.-L., Chen W.-S. Effects of Extracorporeal Shock Wave-Mediated Transdermal Local Anesthetic Drug Delivery on Rat Caudal Nerves. Ultrasound Med. Biol. 2018;44:214–222. doi: 10.1016/j.ultrasmedbio.2017.09.010.
    1. Picelli A., La Marchina E., Gajofatto F., Pontillo A., Vangelista A., Filippini R., Baricich A., Cisari C., Smania N. Sonographic and clinical effects of botulinum toxin Type A combined with extracorporeal shock wave therapy on spastic muscles of children with cerebral palsy. Dev. Neurorehabilit. 2016;20:160–164. doi: 10.3109/17518423.2015.1105320.
    1. Park G.Y., Kwon D.R., Gil Kwon D. Shear wave sonoelastography in infants with congenital muscular torticollis. Medicine. 2018;97:e9818. doi: 10.1097/MD.0000000000009818.
    1. Brandenburg J.E., Eby S., Song P., Bamlet W.R., Sieck G.C., An K.-N. Quantifying Effect of Onabotulinum Toxin A on Passive Muscle Stiffness in Children with Cerebral Palsy Using Ultrasound Shear Wave Elastography. Am. J. Phys. Med. Rehabil. 2018;97:500–506. doi: 10.1097/PHM.0000000000000907.
    1. Vola E.A., Albano M., Di Luise C., Servodidio V., Sansone M., Russo S., Corrado B., Iammarrone C.S., Caprio M.G., Vallone G. Use of ultrasound shear wave to measure muscle stiffness in children with cerebral palsy. J. Ultrasound. 2018;21:241–247. doi: 10.1007/s40477-018-0313-6.
    1. Mathevon L., Michel F., Aubry S., Testa R., Lapole T., Arnaudeau L.F., Fernandez B., Parratte B., Calmels P. Two-dimensional and shear wave elastography ultrasound: A reliable method to analyse spastic muscles? Muscle Nerve. 2018;57:222–228. doi: 10.1002/mus.25716.
    1. Brandenburg J.E., Eby S., Song P., Kingsley-Berg S., Bamlet W., Sieck G., An K.-N. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev. Med. Child. Neurol. 2016;58:1288–1294. doi: 10.1111/dmcn.13179.
    1. Lehoux M.-C., Sobczak S., Cloutier F., Charest S., Bertrand-Grenier A. Shear wave elastography potential to characterize spastic muscles in stroke survivors: Literature review. Clin. Biomech. 2020;72:84–93. doi: 10.1016/j.clinbiomech.2019.11.025.
    1. Banky M., Ryan H.K., Clark R., Olver J., Williams G. Do clinical tests of spasticity accurately reflect muscle function during walking: A systematic review. Brain Inj. 2017;31:440–455. doi: 10.1080/02699052.2016.1271455.
    1. Ansari N.N., Naghdi S., Moammeri H., Jalaie S. Ashworth Scales are unreliable for the assessment of muscle spasticity. Physiother. Theory Pr. 2006;22:119–125. doi: 10.1080/09593980600724188.
    1. Barr R.G., Zhang Z. Shear-Wave Elastography of the Breast: Value of a Quality Measure and Comparison with Strain Elastography. Radiology. 2015;275:45–53. doi: 10.1148/radiol.14132404.
    1. Chen C.L., Chen C.Y., Chen H.C., Wu C.Y., Lin K.C., Hsieh Y.W., Shen I.H. Responsiveness and minimal clinically important difference of Modified Ashworth Scale in patients with stroke. Eur. J. Phys. Rehabil. Med. 2019;55:754–760. doi: 10.23736/S1973-9087.19.05545-X.
    1. Booth C.M., Cortina-Borja M.J.F., Theologis T. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev. Med. Child. Neurol. 2001;43:314–320. doi: 10.1017/S0012162201000597.
    1. Mariotto S., Cavalieri E., Amelio E., Ciampa A.R., de Prati A.C., Marlinghaus E., Russo S., Suzuki H. Extracorporeal shock waves: From lithotripsy to anti-inflammatory action by NO production. Nitric Oxide. 2005;12:89–96. doi: 10.1016/j.niox.2004.12.005.
    1. Trompetto C., Avanzino L., Bove M., Marinelli L., Molfetta L., Trentini R., Abbruzzese G. External shock waves therapy in dystonia: Preliminary results. Eur. J. Neurol. 2009;16:517–521. doi: 10.1111/j.1468-1331.2008.02525.x.
    1. Picelli A., Bonetti P., Fontana C., Barausse M., Dambruoso F., Gajofatto F., Girardi P., Manca M., Gimigliano R., Smania N. Is Spastic Muscle Echo Intensity Related to the Response to Botulinum Toxin Type A in Patients with Stroke? A Cohort Study. Arch. Phys. Med. Rehabil. 2012;93:1253–1258. doi: 10.1016/j.apmr.2012.02.005.
    1. Picelli A., Tamburin S., Cavazza S., Scampoli C., Manca M., Cosma M., Berto G., Vallies G., Roncari L., Melotti C., et al. Relationship Between Ultrasonographic, Electromyographic, and Clinical Parameters in Adult Stroke Patients with Spastic Equinus: An Observational Study. Arch. Phys. Med. Rehabil. 2014;95:1564–1570. doi: 10.1016/j.apmr.2014.04.011.
    1. Pitcher C., Elliott C., Panizzolo F.A., Valentine J.P., Stannage K., Reid S. Ultrasound characterization of medial gastrocnemius tissue composition in children with spastic cerebral palsy. Muscle Nerve. 2015;52:397–403. doi: 10.1002/mus.24549.
    1. Lohse-Busch H., Kraemer M., Reime U. A pilot investigation into the effects of extracorporeal shock waves on muscular dysfunction in children with spastic movement disorders. Schmerz. 1997;11:108–112. doi: 10.1007/s004820050071.
    1. Kamelger F., Oehlbauer M., Piza-Katzer H., Meirer R. Extracorporeal Shock Wave Treatment in Ischemic Tissues: What is the Appropriate Number of Shock Wave Impulses? J. Reconstr. Microsurg. 2010;26:117–121. doi: 10.1055/s-0029-1243296.
    1. Santamato A., Notarnicola A., Panza F., Ranieri M., Micello M.F., Manganotti P., Moretti B., Fortunato F., Filoni S., Fiore P. SBOTE Study: Extracorporeal Shock Wave Therapy Versus Electrical Stimulation After Botulinum Toxin Type A Injection for Post-Stroke Spasticity—A Prospective Randomized Trial. Ultrasound Med. Biol. 2013;39:283–291. doi: 10.1016/j.ultrasmedbio.2012.09.019.
    1. Patrick E., Ada L. The Tardieu Scale differentiates contracture from spasticity whereas the Ashworth Scale is confounded by it. Clin. Rehabil. 2006;20:173–182. doi: 10.1191/0269215506cr922oa.
    1. Benini R., Shevell M.I. Updates in the Treatment of Spasticity Associated with Cerebral Palsy. Curr. Treat. Opt. Neurol. 2012;14:650–659. doi: 10.1007/s11940-012-0192-7.

Source: PubMed

3
Suscribir