Anti-cancer effect and potential microRNAs targets of ginsenosides against breast cancer

Meiling Fan, Mengyao Shan, Xintian Lan, Xiaoxue Fang, Dimeng Song, Haoming Luo, Donglu Wu, Meiling Fan, Mengyao Shan, Xintian Lan, Xiaoxue Fang, Dimeng Song, Haoming Luo, Donglu Wu

Abstract

Breast cancer (BC) is one of the most common malignant tumor, the incidence of which has increased worldwide in recent years. Ginsenosides are the main active components of Panax ginseng C. A. Mey., in vitro and in vivo studies have confirmed that ginsenosides have significant anti-cancer activity, including BC. It is reported that ginsenosides can induce BC cells apoptosis, inhibit BC cells proliferation, migration, invasion, as well as autophagy and angiogenesis, thereby suppress the procession of BC. In this review, the therapeutic effects and the molecular mechanisms of ginsenosides on BC will be summarized. And the combination strategy of ginsenosides with other drugs on BC will also be discussed. In addition, epigenetic changes, especially microRNAs (miRNAs) targeted by ginsenosides in the treatment of BC are clarified.

Keywords: MicroRNAs; breast cancer; combination therapy; ginsenosides; molecular mechanism.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Fan, Shan, Lan, Fang, Song, Luo and Wu.

Figures

FIGURE 1
FIGURE 1
Chemical structures of ginsenosides with anti-breast cancer activity. Glc, glucose. The chemical structures of the ginsenosides included in this publication were obtained from pubchem, but ginsenoside Rp1 was drawn using the chemdraw program.
FIGURE 2
FIGURE 2
Anti-breast cancer effect of various ginsenosides.

References

    1. Adams R. H., Alitalo K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell. Biol. 8 (6), 464–478. 10.1038/nrm2183
    1. Ali S. A., Abdulrahman Z. F. A., Faraidun H. N. (2020). Circulatory miRNA-155, miRNA-21 target PTEN expression and activity as a factor in breast cancer development. Cell. Mol. Biol. 66 (7), 44–50. 10.14715/cmb/2020.66.7.8
    1. Aumeeruddy M. Z., Mahomoodally M. F. (2019). Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer 125 (10), 1600–1611. 10.1002/cncr.32022
    1. Aung H. H., Mehendale S. R., Wang C. Z., Xie J. T., McEntee E., Yuan C. S. (2007). Cisplatin's tumoricidal effect on human breast carcinoma MCF-7 cells was not attenuated by American ginseng. Cancer Chemother. Pharmacol. 59 (3), 369–374. 10.1007/s00280-006-0278-6
    1. Baek N. I., Kim D. S., Lee Y. H., Park J. D., Lee C. B., Kim S. I. (1996). Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med. 62 (1), 86–87. 10.1055/s-2006-957816
    1. Baek S. H., Shin B. K., Kim N. J., Chang S. Y., Park J. H. (2017). Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo . J. Ginseng Res. 41 (3), 233–239. 10.1016/j.jgr.2016.03.008
    1. Ben-Eltriki M., Deb S., Guns E. S. T. (2021). 1α, 25-Dihydroxyvitamin D(3) synergistically enhances anticancer effects of ginsenoside Rh2 in human prostate cancer cells. J. Steroid Biochem. Mol. Biol. 209, 105828. 10.1016/j.jsbmb.2021.105828
    1. Bertoli G., Cava C., Castiglioni I. (2015). MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5 (10), 1122–1143. 10.7150/thno.11543
    1. Chang L., Huo B., Lv Y., Wang Y., Liu W. (2014). Ginsenoside Rg3 enhances the inhibitory effects of chemotherapy on esophageal squamous cell carcinoma in mice. Mol. Clin. Oncol. 2 (6), 1043–1046. 10.3892/mco.2014.355
    1. Changizi V., Gharekhani V., Motavaseli E. (2021). Co-Treatment with ginsenoside 20(S)-Rg3 and curcumin increases radiosensitivity of MDA-MB-231 cancer cell line. Iran. J. Med. Sci. 46 (4), 291–297. 10.30476/ijms.2020.83977.1334
    1. Chen P., Li X., Yu X., Yang M. (2022). Ginsenoside Rg1 suppresses non-small-cell lung cancer via MicroRNA-126-PI3K-AKT-mTOR pathway. Evid. Based. Complement. Altern. Med. 2022, 1244836. 10.1155/2022/1244836
    1. Chen X., Liu W., Liu B. (2021a). Ginsenoside Rh7 suppresses proliferation, migration and invasion of NSCLC cells through targeting ILF3-AS1 mediated miR-212/SMAD1 Axis. Front. Oncol. 11, 656132. 10.3389/fonc.2021.656132
    1. Chen X. P., Qian L. L., Jiang H., Chen J. H. (2011). Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int. J. Clin. Oncol. 16 (5), 519–523. 10.1007/s10147-011-0222-6
    1. Chen X., Xu T., Lv X., Zhang J., Liu S. (2021b). Ginsenoside Rh2 alleviates ulcerative colitis by regulating the STAT3/miR-214 signaling pathway. J. Ethnopharmacol. 274, 113997. 10.1016/j.jep.2021.113997
    1. Chen Y., Zhang Y., Song W., Zhang Y., Dong X., Tan M. (2019). Ginsenoside Rh2 inhibits migration of lung cancer cells under hypoxia via mir-491. Anticancer. Agents Med. Chem. 19 (13), 1633–1641. 10.2174/1871520619666190704165205
    1. Cho J. Y., Yoo E. S., Baik K. U., Park M. H., Han B. H. (2001). In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known TNF-alpha antagonists. Planta Med. 67 (3), 213–218. 10.1055/s-2001-12005
    1. Choi J. S., Chun K. S., Kundu J., Kundu J. K. (2013). Biochemical basis of cancer chemoprevention and/or chemotherapy with ginsenosides (Review). Int. J. Mol. Med. 32 (6), 1227–1238. 10.3892/ijmm.2013.1519
    1. Choi S., Kim T. W., Singh S. V. (2009). Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm. Res. 26 (10), 2280–2288. 10.1007/s11095-009-9944-9
    1. Choi S., Oh J. Y., Kim S. J. (2011). Ginsenoside Rh2 induces Bcl-2 family proteins-mediated apoptosis in vitro and in xenografts in vivo models. J. Cell. Biochem. 112 (1), 330–340. 10.1002/jcb.22932
    1. Chu Y., Zhang W., Kanimozhi G., Brindha G. R., Tian D. (2020). Ginsenoside Rg1 induces apoptotic cell death in triple-negative breast cancer cell lines and prevents carcinogen-induced breast tumorigenesis in sprague dawley rats. Evid. Based. Complement. Altern. Med. 2020, 8886955. 10.1155/2020/8886955
    1. Chung Y., Jeong S., Choi H. S., Ro S., Lee J. S., Park J. K. (2018). Upregulation of autophagy by ginsenoside Rg2 in MCF-7 cells. Anim. Cells Syst. 22 (6), 382–389. 10.1080/19768354.2018.1545696
    1. Colli L. M., Machiela M. J., Zhang H., Myers T. A., Jessop L., Delattre O., et al. (2017). Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res. 77 (13), 3666–3671. 10.1158/0008-5472.CAN-16-3338
    1. Duan Z., Wei B., Deng J., Mi Y., Dong Y., Zhu C., et al. (2018). The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo . Biochem. Biophys. Res. Commun. 499 (3), 482–487. 10.1016/j.bbrc.2018.03.174
    1. Edwards D. N., Ngwa V. M., Raybuck A. L., Wang S., Hwang Y., Kim L. C., et al. (2021). Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest. 131 (4), 140100. 10.1172/JCI140100
    1. Fang H., Xie J., Zhang M., Zhao Z., Wan Y., Yao Y. (2017). miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am. J. Transl. Res. 9 (3), 953–961.
    1. Fridrichova I., Zmetakova I. (2019). MicroRNAs contribute to breast cancer invasiveness. Cells 8 (11), E1361. 10.3390/cells8111361
    1. Hashemi F., Zarrabi A., Zabolian A., Saleki H., Farahani M. V., Sharifzadeh S. O., et al. (2021). Novel strategy in breast cancer therapy: Revealing the bright side of ginsenosides. Curr. Mol. Pharmacol. 14 (6), 1093–1111. 10.2174/1874467214666210120153348
    1. He B., Chen D., Zhang X., Yang R., Yang Y., Chen P., et al. (2022). Oxidative stress and ginsenosides: An update on the molecular mechanisms. Oxid. Med. Cell. Longev. 2022, 9299574. 10.1155/2022/9299574
    1. Hobbs E. A., Chen N., Kuriakose A., Bonefas E., Lim B. (2022). Prognostic/predictive markers in systemic therapy resistance and metastasis in breast cancer. Ther. Adv. Med. Oncol. 14, 17588359221112698. 10.1177/17588359221112698
    1. Hong H., Baatar D., Hwang S. G. (2021). Anticancer activities of ginsenosides, the main active components of ginseng. Evid. Based. Complement. Altern. Med. 2021, 8858006. 10.1155/2021/8858006
    1. Hong Y., Fan D. (2019). Ginsenoside Rk1 induces cell cycle arrest and apoptosis in MDA-MB-231 triple negative breast cancer cells. Toxicology 418, 22–31. 10.1016/j.tox.2019.02.010
    1. Hou J. G., Jeon B. M., Yun Y. J., Cui C. H., Kim S. C. (2019). Ginsenoside Rh2 ameliorates doxorubicin-induced senescence bystander effect in breast carcinoma cell MDA-MB-231 and normal epithelial cell MCF-10a. Int. J. Mol. Sci. 20 (5), E1244. 10.3390/ijms20051244
    1. Hou J., Yun Y., Cui C., Kim S. (2022). Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice. Cell. Prolif. 55 (6), e13246. 10.1111/cpr.13246
    1. Hou M., Wang R., Zhao S., Wang Z. (2021). Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 11 (7), 1813–1834. 10.1016/j.apsb.2020.12.017
    1. Hu C., Yang L., Wang Y., Zhou S., Luo J., Gu Y. (2021). Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop. J. Ginseng Res. 45 (6), 734–743. 10.1016/j.jgr.2021.05.004
    1. Hu X., Zhang Q., Xing W., Wang W. (2022). Role of microRNA/lncRNA intertwined with the wnt/β-catenin Axis in regulating the pathogenesis of triple-negative breast cancer. Front. Pharmacol. 13, 814971. 10.3389/fphar.2022.814971
    1. Huynh D. T. N., Jin Y., Myung C. S., Heo K. S. (2021). Ginsenoside Rh1 induces MCF-7 cell apoptosis and autophagic cell death through ROS-mediated Akt signaling. Cancers (Basel) 13 (8), 1892. 10.3390/cancers13081892
    1. Iorio M. V., Ferracin M., Liu C. G., Veronese A., Spizzo R., Sabbioni S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65 (16), 7065–7070. 10.1158/0008-5472.CAN-05-1783
    1. Jeon H., Huynh D. T. N., Baek N., Nguyen T. L. L., Heo K. S. (2021b). Ginsenoside-Rg2 affects cell growth via regulating ROS-mediated AMPK activation and cell cycle in MCF-7 cells. Phytomedicine. 85, 153549. 10.1016/j.phymed.2021.153549
    1. Jeon H., Jin Y., Myung C. S., Heo K. S. (2021a). Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch. Pharm. Res. 44 (7), 702–712. 10.1007/s12272-021-01345-3
    1. Jiang Y., Wang D., Ren H., Shi Y., Gao Y. (2019). MiR-145-targeted HBXIP modulates human breast cancer cell proliferation. Thorac. Cancer 10 (1), 71–77. 10.1111/1759-7714.12903
    1. Jin X., Yang Q., Cai N. (2018). Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy. Int. J. Nanomedicine 13, 3827–3838. 10.2147/IJN.S167529
    1. Jin Y., Huynh D. T. N., Heo K. S. (2022). Ginsenoside Rh1 inhibits tumor growth in MDA-MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway. Arch. Pharm. Res. 45 (3), 174–184. 10.1007/s12272-022-01377-3
    1. Jin Y., Huynh D. T. N., Myung C. S., Heo K. S. (2021). Ginsenoside Rh1 prevents migration and invasion through mitochondrial ROS-mediated inhibition of STAT3/NF-κB signaling in MDA-MB-231 cells. Int. J. Mol. Sci. 22 (19), 10458. 10.3390/ijms221910458
    1. Jin Y., Huynh D. T. N., Nguyen T. L. L., Jeon H., Heo K. S. (2020). Therapeutic effects of ginsenosides on breast cancer growth and metastasis. Arch. Pharm. Res. 43 (8), 773–787. 10.1007/s12272-020-01265-8
    1. Kang J. H., Song K. H., Woo J. K., Park M. H., Rhee M. H., Choi C., et al. (2011). Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum. Nutr. 66 (3), 298–305. 10.1007/s11130-011-0242-4
    1. Karami Fath M., Azargoonjahromi A., Kiani A., Jalalifar F., Osati P., Akbari Oryani M., et al. (2022). The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell. Mol. Biol. Lett. 27 (1), 52. 10.1186/s11658-022-00344-6
    1. Kim B. J. (2013). Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells. J. Ginseng Res. 37 (2), 201–209. 10.5142/jgr.2013.37.201
    1. Kim B. M., Kim D. H., Park J. H., Na H. K., Surh Y. J. (2013). Ginsenoside Rg3 induces apoptosis of human breast cancer (MDA-MB-231) cells. J. Cancer Prev. 18 (2), 177–185. 10.15430/jcp.2013.18.2.177
    1. Kim B. M., Kim D. H., Park J. H., Surh Y. J., Na H. K. (2014). Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. J. Cancer Prev. 19 (1), 23–30. 10.15430/jcp.2014.19.1.23
    1. Kim H., Ji H. W., Kim H. W., Yun S. H., Park J. E., Kim S. J. (2021). Ginsenoside Rg3 prevents oncogenic long noncoding RNA ATXN8OS from inhibiting tumor-suppressive microRNA-424-5p in breast cancer cells. Biomolecules 11 (1), 118. 10.3390/biom11010118
    1. Kim S. J., Kim A. K. (2015). Anti-breast cancer activity of fine black ginseng (Panax ginseng meyer) and ginsenoside Rg5. J. Ginseng Res. 39 (2), 125–134. 10.1016/j.jgr.2014.09.003
    1. Kwak C. W., Son Y. M., Gu M. J., Kim G., Lee I. K., Kye Y. C., et al. (2015). A bacterial metabolite, compound K, induces programmed necrosis in MCF-7 cells via GSK3β. J. Microbiol. Biotechnol. 25 (7), 1170–1176. 10.4014/jmb.1505.05057
    1. Lahiani M. H., Eassa S., Parnell C., Nima Z., Ghosh A., Biris A. S., et al. (2017). Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology 28 (1), 015101. 10.1088/0957-4484/28/1/015101
    1. Lee Y. S., Dutta A. (2009). MicroRNAs in cancer. Annu. Rev. Pathol. 4, 199–227. 10.1146/annurev.pathol.4.110807.092222
    1. Li J., Huang Q., Yao Y., Ji P., Mingyao E., Chen J., et al. (2022). Biotransformation, pharmacokinetics, and pharmacological activities of ginsenoside Rd against multiple diseases. Front. Pharmacol. 13, 909363. 10.3389/fphar.2022.909363
    1. Li J., Lu J., Ye Z., Han X., Zheng X., Hou H., et al. (2017). 20(S)-Rg3 blocked epithelial-mesenchymal transition through DNMT3A/miR-145/FSCN1 in ovarian cancer. Oncotarget 8 (32), 53375–53386. 10.18632/oncotarget.18482
    1. Li J., Wei Q., Zuo G. W., Xia J., You Z. M., Li C. L., et al. (2014). Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line. Asian pac. J. Cancer Prev. 15 (6), 2453–2459. 10.7314/apjcp.2014.15.6.2453
    1. Li L., Wang Y., Qi B., Yuan D., Dong S., Guo D., et al. (2014). Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-κB-dependent MMP-9 expression. Oncol. Rep. 32 (5), 1779–1786. 10.3892/or.2014.3422
    1. Li X., Chu S., Lin M., Gao Y., Liu Y., Yang S., et al. (2020). Anticancer property of ginsenoside Rh2 from ginseng. Eur. J. Med. Chem. 203, 112627. 10.1016/j.ejmech.2020.112627
    1. Li Y., He F., Zhang Y., Pan Z. (2022). Apatinib and ginsenoside-Rb1 synergetically control the growth of hypopharyngeal carcinoma cells. Dis. Markers 2022, 3833489. 10.1155/2022/3833489
    1. Liu C., Gong Q., Chen T., Lv J., Feng Z., Liu P., et al. (2018). Treatment with 20(S)-ginsenoside Rg3 reverses multidrug resistance in A549/DDP xenograft tumors. Oncol. Lett. 15 (4), 4376–4382. 10.3892/ol.2018.7849
    1. Liu G., Zhang J., Sun F., Ma J., Qi X. (2022). Ginsenoside Rg2 attenuated trastuzumab-induced cardiotoxicity in rats. Biomed. Res. Int. 2022, 8866660. 10.1155/2022/8866660
    1. Liu H., Dilger J. P., Lin J. (2020). The role of transient receptor potential melastatin 7 (TRPM7) in cell viability: A potential target to suppress breast cancer cell cycle. Cancers (Basel) 12 (1), E131. 10.3390/cancers12010131
    1. Liu H. (2012). MicroRNAs in breast cancer initiation and progression. Cell. Mol. Life Sci. 69 (21), 3587–3599. 10.1007/s00018-012-1128-9
    1. Liu J., Wang Y., Yu Z., Lv G., Huang X., Lin H., et al. (2022). Functional mechanism of ginsenoside compound K on tumor growth and metastasis. Integr. Cancer Ther. 21, 15347354221101203. 10.1177/15347354221101203
    1. Liu L., Wang H., Chai X., Meng Q., Jiang S., Zhao F. (2022). Advances in biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2. Mini Rev. Med. Chem. 22 (3), 437–448. 10.2174/1389557521666210913114631
    1. Liu M. Y., Liu F., Gao Y. L., Yin J. N., Yan W. Q., Liu J. G., et al. (2021). Pharmacological activities of ginsenoside Rg5 (review). Exp. Ther. Med. 22 (2), 840. 10.3892/etm.2021.10272
    1. Liu S. Y., Li X. Y., Chen W. Q., Hu H., Luo B., Shi Y. X., et al. (2017). Demethylation of the MIR145 promoter suppresses migration and invasion in breast cancer. Oncotarget 8 (37), 61731–61741. 10.18632/oncotarget.18686
    1. Liu T., Zhu L., Wang L. (2022). A narrative review of the pharmacology of ginsenoside compound K. Ann. Transl. Med. 10 (4), 234. 10.21037/atm-22-501
    1. Liu W., Pan H. F., Yang L. J., Zhao Z. M., Yuan D. S., Liu Y. L., et al. (2020). Panax ginseng C.A. Meyer (Rg3) ameliorates gastric precancerous lesions in Atp4a(-/-) mice via inhibition of glycolysis through PI3K/AKT/miRNA-21 pathway. Evid. Based. Complement. Altern. Med. 2020, 2672648. 10.1155/2020/2672648
    1. Liu X., Papukashvili D., Wang Z., Liu Y., Chen X., Li J., et al. (2022). Potential utility of miRNAs for liquid biopsy in breast cancer. Front. Oncol. 12, 940314. 10.3389/fonc.2022.940314
    1. Liu Y., Fan D. (2018). Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model. Food Funct. 9 (11), 5513–5527. 10.1039/c8fo01122b
    1. Liu Y., Fan D. (2020). The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K. Nutrients 12 (1), E246. 10.3390/nu12010246
    1. Liu Z., Liu T., Li W., Li J., Wang C., Zhang K. (2021). Insights into the antitumor mechanism of ginsenosides Rg3. Mol. Biol. Rep. 48 (3), 2639–2652. 10.1007/s11033-021-06187-2
    1. Lu J., Wang L., Chen W., Wang Y., Zhen S., Chen H., et al. (2019). miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells. Arch. Biochem. Biophys. 661, 1–9. 10.1016/j.abb.2018.10.014
    1. Lu J., Zhou Y., Zheng X., Chen L., Tuo X., Chen H., et al. (2020). 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch. Biochem. Biophys. 693, 108569. 10.1016/j.abb.2020.108569
    1. Lu T. X., Rothenberg M. E. (2018). MicroRNA. J. Allergy Clin. Immunol. 141 (4), 1202–1207. 10.1016/j.jaci.2017.08.034
    1. Lyu X., Xu X., Song A., Guo J., Zhang Y., Zhang Y. (2019). Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo . Oncol. Lett. 18 (4), 4160–4166. 10.3892/ol.2019.10742
    1. Mai T. T., Moon J., Song Y., Viet P. Q., Phuc P. V., Lee J. M., et al. (2012). Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 321 (2), 144–153. 10.1016/j.canlet.2012.01.045
    1. McGuire A., Brown J. A., Kerin M. J. (2015). Metastatic breast cancer: The potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 34 (1), 145–155. 10.1007/s10555-015-9551-7
    1. Meng H., Liu X. K., Li J. R., Bao T. Y., Yi F. (2022). Bibliometric analysis of the effects of ginseng on skin. J. Cosmet. Dermatol. 21 (1), 99–107. 10.1111/jocd.14450
    1. Nakhjavani M., Palethorpe H. M., Tomita Y., Smith E., Price T. J., Yool A. J., et al. (2019). Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharm. (Basel) 12 (3), E117. 10.3390/ph12030117
    1. Nakhjavani M., Smith E., Palethorpe H. M., Tomita Y., Yeo K., Price T. J., et al. (2021). Anti-cancer effects of an optimised combination of ginsenoside Rg3 epimers on triple negative breast cancer models. Pharm. (Basel) 14 (7), 633. 10.3390/ph14070633
    1. Oh J., Yoon H. J., Jang J. H., Kim D. H., Surh Y. J. (2019). The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling. J. Ginseng Res. 43 (3), 421–430. 10.1016/j.jgr.2018.05.004
    1. Oh M., Choi Y. H., Choi S., Chung H., Kim K., Kim S. I., et al. (1999). Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int. J. Oncol. 14 (5), 869–875. 10.3892/ijo.14.5.869
    1. Ouyang Q., Cui Y., Yang S., Wei W., Zhang M., Zeng J., et al. (2020). lncRNA MT1JP suppresses biological activities of breast cancer cells in vitro and in vivo by regulating the miRNA-214/RUNX3 Axis. Onco. Targets. Ther. 13, 5033–5046. 10.2147/OTT.S241503
    1. Pan W., Xue B., Yang C., Miao L., Zhou L., Chen Q., et al. (2018). Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia 129, 272–282. 10.1016/j.fitote.2018.06.001
    1. Park J. E., Ji H. W., Kim H. W., Baek M., Jung S., Kim S. J. (2022). Ginsenoside Rh2 regulates the cfap20dc-AS1/MicroRNA-3614-3p/BBX and TNFAIP3 Axis to induce apoptosis in breast cancer cells. Am. J. Chin. Med. 50 (6), 1703–1717. 10.1142/S0192415X22500720
    1. Park J. E., Kim H. W., Yun S. H., Kim S. J. (2021). Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation. J. Ginseng Res. 45 (6), 754–762. 10.1016/j.jgr.2021.08.006
    1. Peng K., Luo T., Li J., Huang J., Dong Z., Liu J., et al. (2022). Ginsenoside Rh2 inhibits breast cancer cell growth viaERβ-TNFα pathway. Shanghai): Acta Biochim Biophys Sin.
    1. Qi L. W., Wang C. Z., Yuan C. S. (2011). Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry 72 (8), 689–699. 10.1016/j.phytochem.2011.02.012
    1. Qiu D., Zhang G., Yan X., Xiao X., Ma X., Lin S., et al. (2021). Prospects of immunotherapy for triple-negative breast cancer. Front. Oncol. 11, 797092. 10.3389/fonc.2021.797092
    1. Ren G., Shi Z., Teng C., Yao Y. (2018). Antiproliferative activity of combined biochanin A and ginsenoside Rh₂ on MDA-MB-231 and MCF-7 human breast cancer cells. Molecules 23 (11), E2908. 10.3390/molecules23112908
    1. Ryoo N., Rahman M. A., Hwang H., Ko S. K., Nah S. Y., Kim H. C., et al. (2020). Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons. J. Ginseng Res. 44 (3), 490–495. 10.1016/j.jgr.2019.04.002
    1. Shekari N., Asadi M., Akbari M., Baradaran B., Zarredar H., Mohaddes-Gharamaleki F., et al. (2022). Autophagy-regulating microRNAs: Two-sided coin in the therapies of breast cancer. Eur. Rev. Med. Pharmacol. Sci. 26 (4), 1268–1282. 10.26355/eurrev_202202_28120
    1. Song J. H., Eum D. Y., Park S. Y., Jin Y. H., Shim J. W., Park S. J., et al. (2020). Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One 15 (10), e0240533. 10.1371/journal.pone.0240533
    1. Song X., Wang L., Fan D. (2022). Insights into recent studies on biotransformation and pharmacological activities of ginsenoside Rd. Biomolecules 12 (4), 512. 10.3390/biom12040512
    1. Tang W., Zhang X., Tan W., Gao J., Pan L., Ye X., et al. (2019). miR-145-5p suppresses breast cancer progression by inhibiting SOX2. J. Surg. Res. 236, 278–287. 10.1016/j.jss.2018.11.030
    1. Wang B., Wang F., Ding A., Zhao H., Bu X. (2020). Regorafenib and ginsenoside combination therapy: Inhibition of HepG2 cell growth through modulating survivin and caspase-3 gene expression. Clin. Transl. Oncol. 22 (9), 1491–1498. 10.1007/s12094-019-02283-9
    1. Wang P., Du X., Xiong M., Cui J., Yang Q., Wang W., et al. (2016). Ginsenoside Rd attenuates breast cancer metastasis implicating derepressing microRNA-18a-regulated Smad2 expression. Sci. Rep. 6, 33709. 10.1038/srep33709
    1. Wang P., Song D., Wan D., Li L., Mei W., Li X., et al. (2020). Ginsenoside panaxatriol reverses TNBC paclitaxel resistance by inhibiting the IRAK1/NF-κB and ERK pathways. PeerJ 8, e9281. 10.7717/peerj.9281
    1. Wei Q., Ren Y., Zheng X., Yang S., Lu T., Ji H., et al. (2022). Ginsenoside Rg3 and sorafenib combination therapy relieves the hepatocellular carcinomaprogression through regulating the HK2-mediated glycolysis and PI3K/Akt signaling pathway. Bioengineered 13 (5), 13919–13928. 10.1080/21655979.2022.2074616
    1. Wen X., Zhang H. D., Zhao L., Yao Y. F., Zhao J. H., Tang J. H. (2015). Ginsenoside Rh2 differentially mediates microRNA expression to prevent chemoresistance of breast cancer. Asian pac. J. Cancer Prev. 16 (3), 1105–1109. 10.7314/apjcp.2015.16.3.1105
    1. Wu N., Wu G. C., Hu R., Li M., Feng H. (2011). Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol. Sin. 32 (3), 345–353. 10.1038/aps.2010.220
    1. Xu J., Wu K. J., Jia Q. J., Ding X. F. (2020). Roles of miRNA and lncRNA in triple-negative breast cancer. J. Zhejiang Univ. Sci. B 21 (9), 673–689. 10.1631/jzus.B1900709
    1. Xu L., Xiao S., Lee J. J., Li X., Zhao Y. (2022). Gender-related differences in tissue distribution, excretion, and metabolism studies of panaxadiol in rats and anti-inflammatory study. J. Agric. Food Chem. 70 (28), 8672–8679. 10.1021/acs.jafc.2c02618
    1. Yang L., Zhang X. Y., Li K., Li A. P., Yang W. D., Yang R., et al. (2019). Protopanaxadiol inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by targeting STAT3 pathway. Cell. Death Dis. 10 (9), 630. 10.1038/s41419-019-1733-8
    1. Yu R., Zhang Y., Xu Z., Wang J., Chen B., Jin H. (2018). Potential antitumor effects of panaxatriol against DU-15 human prostate cancer cells is mediated via mitochondrial mediated apoptosis, inhibition of cell migration and sub-G1 cell cycle arrest. J. buon 23 (1), 200–204.
    1. Yuan Z., Jiang H., Zhu X., Liu X., Li J. (2017). Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed. Pharmacother. 89, 227–232. 10.1016/j.biopha.2017.02.038
    1. Zarneshan S. N., Fakhri S., Khan H. (2022). Targeting akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol. Res. 177, 106099. 10.1016/j.phrs.2022.106099
    1. Zeng L., Li W., Chen C. S. (2020). Breast cancer animal models and applications. Zool. Res. 41 (5), 477–494. 10.24272/j.issn.2095-8137.2020.095
    1. Zhang B., Fu R., Duan Z., Shen S., Zhu C., Fan D. (2022). Ginsenoside CK induces apoptosis in triple-negative breast cancer cells by targeting glutamine metabolism. Biochem. Pharmacol. 202, 115101. 10.1016/j.bcp.2022.115101
    1. Zhang E., Shi H., Yang L., Wu X., Wang Z. (2017). Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. Oncol. Rep. 38 (1), 359–367. 10.3892/or.2017.5652
    1. Zhang K., Li Y. (2016). Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer. Pharm. Biol. 54 (4), 561–568. 10.3109/13880209.2015.1101142
    1. Zhang M., Wang Y., Wu Y., Li F., Han M., Dai Y., et al. (2021). In vitro transformation of protopanaxadiol saponins in human intestinal flora and its effect on intestinal flora. Evid. Based. Complement. Altern. Med. 2021, 1735803. 10.1155/2021/1735803
    1. Zhang Y., Liu Q. Z., Xing S. P., Zhang J. L. (2016). Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Asian pac. J. Trop. Med. 9 (2), 180–183. 10.1016/j.apjtm.2016.01.010
    1. Zhao A., Liu N., Yao M., Zhang Y., Yao Z., Feng Y., et al. (2022). A review of neuroprotective effects and mechanisms of ginsenosides from Panax ginseng in treating ischemic stroke. Front. Pharmacol. 13, 946752. 10.3389/fphar.2022.946752
    1. Zhao L., Zhang Y., Li Y., Li C., Shi K., Zhang K., et al. (2022). Therapeutic effects of ginseng and ginsenosides on colorectal cancer. Food Funct. 13 (12), 6450–6466. 10.1039/d2fo00899h
    1. Zheng X., Zhou Y., Chen W., Chen L., Lu J., He F., et al. (2018). Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the warburg effect in ovarian cancer cells. Cell. Physiol. biochem. 51 (3), 1340–1353. 10.1159/000495552
    1. Zou M., Wang J., Gao J., Han H., Fang Y. (2018). Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol. Lett. 15 (3), 2889–2898. 10.3892/ol.2017.7654
    1. Zuo S., Wang J., An X., Wang Z., Zheng X., Zhang Y. (2022). Fabrication of ginsenoside-based nanodrugs for enhanced antitumor efficacy on triple-negative breast cancer. Front. Bioeng. Biotechnol. 10, 945472. 10.3389/fbioe.2022.945472

Source: PubMed

3
Suscribir