Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks

Pascal Amireault, David Sibon, Francine Côté, Pascal Amireault, David Sibon, Francine Côté

Abstract

Since its identification, 75 years ago, the monoamine serotonin (5-HT) has attracted considerable attention toward its role as a neurotransmitter in the central nervous system. Yet, increasing evidence, from a growing number of research groups, substantiates the fact that 5-HT regulates important nonneuronal functions. Peripheral 5-HT, synthesized by the enzyme tryptophan hydroxyase (Tph) in intestinal cells, was assumed to be distributed throughout the entire body by blood platelets and to behave as a pleiotropic hormone. A decade ago, generation of a mouse model devoid of peripheral 5-HT lead to the discovery of a second isoform of the enzyme Tph and also suggested that 5-HT might act as a local regulator in various organs. The objective of this review is to highlight the newly discovered functions played by the monoamine using the Tph1 KO murine model and to outline current findings that led to the discovery of complete serotonergic systems in unexpected organs. Within an organ, both the presence of local Tph enzymatic activity and serotonergic components are of particular importance as they support the view that 5-HT meets the criteria to be qualified as a monoamine with a paracrine/autocrine function.

Figures

Figure 1
Figure 1
(A) Presence of 5-HT but absence of Tph activity in the reproductive tract of female mice. The 5-HT content of the oviduct (upper panel) and the uterus (lower panel) was evaluated by HPLC in superovulated WT(blue bar; n = 5) or Tph1 KO mice (red bar; n = 5). The 5-HT content of both the oviduct and the uterus increases after ovulation (8 h postovulation), when compared to tissues harvested before ovulation (8 h preovulation), and is greatly reduced in the reproductive tract of Tph1 KO mice. (B) Tph activity is not detected in the oviduct and uterus of superovulated mice at any stage tested. Tph activity was determined by a radioenzymatic assay. Briefly, tissue homogenate was added to a reaction mixture containing 0.05 mM tryptophan, 50 mM Hepes (pH 7.6), 5 mM DTT, 0.01 mM Fe(NH4)2(SO4)2, 0.5 mM 6-MPH4, 0.1 mg/mL catalase, and [3H]-tryptophan (1 mCi/reaction). Unreacted tryptophan and the product 5-HTP were adsorbed with charcoal in 1 M HCl at the end of the incubation. The samples were then centrifuged, the supernatant added to scintillation fluid, and the radioactivity was measured by a liquid scintillation counter. (C) Genetic crosses were performed in which WT males were mated with WT (+/+; n = 12), heterozygous (+/–; n = 9), or Tph1 KO (−/–; n = 13) females and revealed a reduction in the number of pups per litter born from Tph1 KO mothers. In (A) and (C), the letters denote values that are statistically different using a one-way ANOVA followed by a Tukey’s multiple comparison test. P < 0.05 was considered significant.

References

    1. Erspamer V.; Asero B. (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169, 800–801.
    1. Rapport M. M.; Green A. A.; Page I. H. (1948) Crystalline Serotonin. Science 108, 329–330.
    1. Twarog B. M.; Page I. H. (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am. J. Physiol. 175, 157–161.
    1. Gershon M. D. (1999) Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol. Ther. 13(Suppl 2), 15–30.
    1. Fitzpatrick P. F. (2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42, 14083–14091.
    1. Legay C.; Faudon M.; Hery F.; Ternaux J. P. (1983) 5-HT metabolism in the intestinal wall of the rat-I. The mucosa. Neurochem. Int. 5, 721–727.
    1. Legay C.; Faudon M.; Hery F.; Ternaux J. P. (1983) 5-HT metabolism in the intestinal wall of the rat-II. The nerves plexuses-interactions between 5-HT containing cells. Neurochem. Int. 5, 571–577.
    1. Lovenberg W.; Jequier E.; Sjoerdsma A. (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 155, 217–219.
    1. Berger M.; Gray J. A.; Roth B. L. (2009) The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366.
    1. Walther D. J.; Peter J. U.; Bashammakh S.; Hortnagl H.; Voits M.; Fink H.; Bader M. (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.
    1. Cote F.; Thevenot E.; Fligny C.; Fromes Y.; Darmon M.; Ripoche M. A.; Bayard E.; Hanoun N.; Saurini F.; Lechat P.; Dandolo L.; Hamon M.; Mallet J.; Vodjdani G. (2003) Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. U.S.A. 100, 13525–13530.
    1. Gutknecht L.; Kriegebaum C.; Waider J.; Schmitt A.; Lesch K. P. (2009) Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur. Neuropsychopharmacol. 19, 266–282.
    1. Sakowski S. A.; Geddes T. J.; Thomas D. M.; Levi E.; Hatfield J. S.; Kuhn D. M. (2006) Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies. Brain Res. 1085, 11–18.
    1. Patel P. D.; Pontrello C.; Burke S. (2004) Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol. Psychiatry 55, 428–433.
    1. Zill P.; Buttner A.; Eisenmenger W.; Muller J.; Moller H. J.; Bondy B. (2009) Predominant expression of tryptophan hydroxylase 1 mRNA in the pituitary: a postmortem study in human brain. Neuroscience 159, 1274–1282.
    1. Zill P.; Buttner A.; Eisenmenger W.; Moller H. J.; Ackenheil M.; Bondy B. (2007) Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J. Psychiatr. Res. 41, 168–173.
    1. Zhang X.; Beaulieu J. M.; Sotnikova T. D.; Gainetdinov R. R.; Caron M. G. (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.
    1. Watts S. W.; Morrison S. F.; Davis R. P.; Barman S. M. (2012) Serotonin and blood pressure regulation. Pharmacol. Rev. 64, 359–388.
    1. Amireault P.; Dube F. (2005) Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharmacol. 68, 1678–1687.
    1. Amireault P.; Dube F. (2005) Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol. Reprod. 73, 358–365.
    1. Il’kova G.; Rehak P.; Vesela J.; Cikos S.; Fabian D.; Czikkova S.; Koppel J. (2004) Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote 12, 205–213.
    1. Vesela J.; Rehak P.; Mihalik J.; Czikkova S.; Pokorny J.; Koppel J. (2003) Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol. Res. 52, 223–228.
    1. Walther D. J.; Bader M. (1999) Serotonin synthesis in murine embryonic stem cells. Brain Res. Mol. Brain Res. 68, 55–63.
    1. Basu B.; Desai R.; Balaji J.; Chaerkady R.; Sriram V.; Maiti S.; Panicker M. M. (2008) Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential. Reproduction 135, 657–669.
    1. Doherty L. F.; Kwon H. E.; Taylor H. S. (2011) Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling. Am. J. Physiol. Endocrinol. Metab. E86–93.
    1. Yavarone M. S.; Shuey D. L.; Sadler T. W.; Lauder J. M. (1993) Serotonin uptake in the ectoplacental cone and placenta of the mouse. Placenta 14, 149–161.
    1. Cote F.; Fligny C.; Bayard E.; Launay J. M.; Gershon M. D.; Mallet J.; Vodjdani G. (2007) Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. U.S.A. 104, 329–334.
    1. Bonnin A.; Goeden N.; Chen K.; Wilson M. L.; King J.; Shih J. C.; Blakely R. D.; Deneris E. S.; Levitt P. (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472, 347–350.
    1. Bonnin A.; Levitt P. (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197, 1–7.
    1. Huang W. Q.; Zhang C. L.; Di X. Y.; Zhang R. Q. (1998) Studies on the localization of 5-hydroxytryptamine and its receptors in human placenta. Placenta 19, 655–661.
    1. Viau M.; Lafond J.; Vaillancourt C. (2009) Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod. Biomed. Online 19, 207–215.
    1. Sonier B.; Lavigne C.; Arseneault M.; Ouellette R.; Vaillancourt C. (2005) Expression of the 5-HT2A serotoninergic receptor in human placenta and choriocarcinoma cells: mitogenic implications of serotonin. Placenta 26, 484–490.
    1. Balkovetz D. F.; Tiruppathi C.; Leibach F. H.; Mahesh V. B.; Ganapathy V. (1989) Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. J. Biol. Chem. 264, 2195–2198.
    1. Klempan T.; Hudon-Thibeault A. A.; Oufkir T.; Vaillancourt C.; Sanderson J. T. (2011) Stimulation of serotonergic 5-HT2A receptor signaling increases placental aromatase (CYP19) activity and expression in BeWo and JEG-3 human choriocarcinoma cells. Placenta 32, 651–656.
    1. Oufkir T.; Vaillancourt C. (2011) Phosphorylation of JAK2 by serotonin 5-HT (2A) receptor activates both STAT3 and ERK1/2 pathways and increases growth of JEG-3 human placental choriocarcinoma cell. Placenta 32, 1033–1040.
    1. Matsuda M.; Imaoka T.; Vomachka A. J.; Gudelsky G. A.; Hou Z.; Mistry M.; Bailey J. P.; Nieport K. M.; Walther D. J.; Bader M.; Horseman N. D. (2004) Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev. Cell. 6, 193–203.
    1. Stull M. A.; Pai V.; Vomachka A. J.; Marshall A. M.; Jacob G. A.; Horseman N. D. (2007) Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc. Natl. Acad. Sci. U.S.A. 104, 16708–16713.
    1. Pai V. P.; Horseman N. D. (2011) Multiple cellular responses to serotonin contribute to epithelial homeostasis. PLoS One 6, e17028.
    1. Marshall A. M.; Nommsen-Rivers L. A.; Hernandez L. L.; Dewey K. G.; Chantry C. J.; Gregerson K. A.; Horseman N. D. (2010) Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution. J. Clin. Endocrinol. Metab. 95, 837–846.
    1. Pai V. P.; Horseman N. D. (2008) Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J. Biol. Chem. 283, 30901–30910.
    1. Gershon M. D.; Tack J. (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414.
    1. Li Z.; Chalazonitis A.; Huang Y. Y.; Mann J. J.; Margolis K. G.; Yang Q. M.; Kim D. O.; Cote F.; Mallet J.; Gershon M. D. (2011) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009.
    1. Manocha M.; Khan W. I. (2012) Serotonin and GI disorders: an update on clinical and experimental studies. Clin. Transl. Gastroenterol. 3, e13.
    1. O’Connell P. J.; Wang X.; Leon-Ponte M.; Griffiths C.; Pingle S. C.; Ahern G. P. (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107, 1010–1017.
    1. Ahern G. P. (2011) 5-HT and the immune system. Curr. Opin. Pharmacol. 11, 29–33.
    1. León-Ponte M.; Ahern G. P.; O’Connell P. J. (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109, 3139–3146.
    1. Ghia J. E.; Li N.; Wang H.; Collins M.; Deng Y.; El-Sharkawy R. T.; Cote F.; Mallet J.; Khan W. I. (2009) Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137, 1649–1660.
    1. Margolis K. G.; Stevanovic K. D.; Yang Q. M.; Li Z.; Mazo R.; Gershon M. D. (2011) An inhibitor of tryptophanhydroxylase successfully ameliorates TNBS-induced colitis. Gastroenterology 140, S478.
    1. Richmond J. E.; Codignola A.; Cooke I. M.; Sher E. (1996) Calcium- and barium-dependent exocytosis from the rat insulinoma cell line RINm5F assayed using membrane capacitance measurements and serotonin release. Pflugers Arch. 432, 258–269.
    1. Rieck S.; White P.; Schug J.; Fox A. J.; Smirnova O.; Gao N.; Gupta R. K.; Wang Z. V.; Scherer P. E.; Keller M. P.; Attie A. D.; Kaestner K. H. (2009) The transcriptional response of the islet to pregnancy in mice. Mol. Endocrinol. 23, 1702–1712.
    1. Bouwens L.; Rooman I. (2005) Regulation of pancreatic beta-cell mass. Physiol. Rev. 85, 1255–1270.
    1. Schraenen A.; Lemaire K.; de Faudeur G.; Hendrickx N.; Granvik M.; Van Lommel L.; Mallet J.; Vodjdani G.; Gilon P.; Binart N.; in’t Veld P.; Schuit F. (2010) Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia 53, 2589–2599.
    1. Kim H.; Toyofuku Y.; Lynn F. C.; Chak E.; Uchida T.; Mizukami H.; Fujitani Y.; Kawamori R.; Miyatsuka T.; Kosaka Y.; Yang K.; Honig G.; van der Hart M.; Kishimoto N.; Wang J.; Yagihashi S.; Tecott L. H.; Watada H.; German M. S. (2010) Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16, 804–808.
    1. Paulmann N.; Grohmann M.; Voigt J. P.; Bert B.; Vowinckel J.; Bader M.; Skelin M.; Jevsek M.; Fink H.; Rupnik M.; Walther D. J. (2009) Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 7, e1000229.
    1. Teitelbaum S. L.; Ross F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649.
    1. Battaglino R.; Fu J.; Spate U.; Ersoy U.; Joe M.; Sedaghat L.; Stashenko P. (2004) Serotonin regulates osteoclast differentiation through its transporter. J. Bone Miner. Res. 19, 1420–1431.
    1. Warden S. J.; Robling A. G.; Sanders M. S.; Bliziotes M. M.; Turner C. H. (2005) Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology 146, 685–693.
    1. Collet C.; Schiltz C.; Geoffroy V.; Maroteaux L.; Launay J. M.; de Vernejoul M. C. (2008) The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J. 22, 418–427.
    1. Bliziotes M. M.; Eshleman A. J.; Zhang X. W.; Wiren K. M. (2001) Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone 29, 477–486.
    1. Westbroek I.; van der Plas A.; de Rooij K. E.; Klein-Nulend J.; Nijweide P. J. (2001) Expression of serotonin receptors in bone. J. Biol. Chem. 276, 28961–28968.
    1. Warden S. J.; Nelson I. R.; Fuchs R. K.; Bliziotes M. M.; Turner C. H. (2008) Serotonin (5-hydroxytryptamine) transporter inhibition causes bone loss in adult mice independently of estrogen deficiency. Menopause 15, 1176–1183.
    1. Bliziotes M.; Eshleman A.; Burt-Pichat B.; Zhang X. W.; Hashimoto J.; Wiren K.; Chenu C. (2006) Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone 39, 1313–1321.
    1. Yadav V. K.; Ryu J. H.; Suda N.; Tanaka K. F.; Gingrich J. A.; Schutz G.; Glorieux F. H.; Chiang C. Y.; Zajac J. D.; Insogna K. L.; Mann J. J.; Hen R.; Ducy P.; Karsenty G. (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837.
    1. Yadav V. K.; Balaji S.; Suresh P. S.; Liu X. S.; Lu X.; Li Z.; Guo X. E.; Mann J. J.; Balapure A. K.; Gershon M. D.; Medhamurthy R.; Vidal M.; Karsenty G.; Ducy P. (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 16, 308–312.
    1. Yadav V. K.; Arantes H. P.; Barros E. R.; Lazaretti-Castro M.; Ducy P. (2010) Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif. Tissue Int. 86, 382–388.
    1. Tamai K.; Zeng X.; Liu C.; Zhang X.; Harada Y.; Chang Z.; He X. (2004) A mechanism for Wnt coreceptor activation. Mol. Cell 13, 149–156.
    1. Boyden L. M.; Mao J.; Belsky J.; Mitzner L.; Farhi A.; Mitnick M. A.; Wu D.; Insogna K.; Lifton R. P. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521.
    1. Chabbi-Achengli Y.; Coudert A. E.; Callebert J.; Geoffroy V.; Cote F.; Collet C.; de Vernejoul M. C. (2012) Decreased osteoclastogenesis in serotonin-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 109, 2567–2572.
    1. Murata S.; Ohkohchi N.; Matsuo R.; Ikeda O.; Myronovych A.; Hoshi R. (2007) Platelets promote liver regeneration in early period after hepatectomy in mice. World J. Surg. 31, 808–816.
    1. Balasubramanian S.; Paulose C. S. (1998) Induction of DNA synthesis in primary cultures of rat hepatocytes by serotonin: possible involvement of serotonin S2 receptor. Hepatology 27, 62–66.
    1. Papadimas G. K.; Tzirogiannis K. N.; Panoutsopoulos G. I.; Demonakou M. D.; Skaltsas S. D.; Hereti R. I.; Papadopoulou-Daifoti Z.; Mykoniatis M. G. (2006) Effect of serotonin receptor 2 blockage on liver regeneration after partial hepatectomy in the rat liver. Liver Int. 26, 352–361.
    1. Lesurtel M.; Graf R.; Aleil B.; Walther D. J.; Tian Y.; Jochum W.; Gachet C.; Bader M.; Clavien P. A. (2006) Platelet-derived serotonin mediates liver regeneration. Science 312, 104–107.
    1. Matondo R. B.; Punt C.; Homberg J.; Toussaint M. J.; Kisjes R.; Korporaal S. J.; Akkerman J. W.; Cuppen E.; de Bruin A. (2009) Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G963–968.
    1. Lowy P. H.; Keighley G.; Cohen N. S. (1970) Stimulation by serotonin of erythropoietin-dependent erythropoiesis in mice. Br. J. Hamaetol. 19, 711–718.
    1. Noveck R. J.; Fisher J. W. (1971) Erythropoietic effects of 5-hydroxytryptamine. Proc. Soc. Exp. Biol. Med. 138, 103–107.
    1. Yang M.; Srikiatkhachorn A.; Anthony M.; Chong B. H. (1996) Serotonin stimulates megakaryocytopoiesis via the 5-HT2 receptor. Blood Coagul. Fibrinolysis 7, 127–133.
    1. Liu Y. S.; Yang M. (2006) The effect of 5-hydroxtryptamine on the regulation of megakaryocytopoiesis. Hematology 11, 53–56.
    1. Yang M.; Li K.; Ng P. C.; Chuen C. K.; Lau T. K.; Cheng Y. S.; Liu Y. S.; Li C. K.; Yuen P. M.; James A. E.; Lee S. M.; Fok T. F. (2007) Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells 25, 1800–1806.
    1. Amireault P.; Hatia S.; Bayard E.; Bernex F.; Collet C.; Callebert J.; Launay J. M.; Hermine O.; Schneider E.; Mallet J.; Dy M.; Cote F. (2011) Ineffective erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 108, 13141–13146.
    1. Walther D. J.; Peter J. U.; Winter S.; Holtje M.; Paulmann N.; Grohmann M.; Vowinckel J.; Alamo-Bethencourt V.; Wilhelm C. S.; Ahnert-Hilger G.; Bader M. (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115, 851–862.
    1. Guilluy C.; Eddahibi S.; Agard C.; Guignabert C.; Izikki M.; Tu L.; Savale L.; Humbert M.; Fadel E.; Adnot S.; Loirand G.; Pacaud P. (2009) RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am. J. Respir. Crit. Care Med. 179, 1151–1158.
    1. Watts S. W.; Priestley J. R.; Thompson J. M. (2009) Serotonylation of vascular proteins important to contraction. PLoS One 4, e5682.

Source: PubMed

3
Suscribir