The COVID-19 pandemic and physical activity

Jeffrey A Woods, Noah T Hutchinson, Scott K Powers, William O Roberts, Mari Carmen Gomez-Cabrera, Zsolt Radak, Istvan Berkes, Anita Boros, Istvan Boldogh, Christiaan Leeuwenburgh, Hélio José Coelho-Júnior, Emanuele Marzetti, Ying Cheng, Jiankang Liu, J Larry Durstine, Junzhi Sun, Li Li Ji, Jeffrey A Woods, Noah T Hutchinson, Scott K Powers, William O Roberts, Mari Carmen Gomez-Cabrera, Zsolt Radak, Istvan Berkes, Anita Boros, Istvan Boldogh, Christiaan Leeuwenburgh, Hélio José Coelho-Júnior, Emanuele Marzetti, Ying Cheng, Jiankang Liu, J Larry Durstine, Junzhi Sun, Li Li Ji

Abstract

The SARS-CoV-2-caused COVID-19 pandemic has resulted in a devastating threat to human society in terms of health, economy, and lifestyle. Although the virus usually first invades and infects the lung and respiratory track tissue, in extreme cases, almost all major organs in the body are now known to be negatively impacted often leading to severe systemic failure in some people. Unfortunately, there is currently no effective treatment for this disease. Pre-existing pathological conditions or comorbidities such as age are a major reason for premature death and increased morbidity and mortality. The immobilization due to hospitalization and bed rest and the physical inactivity due to sustained quarantine and social distancing can downregulate the ability of organs systems to resist to viral infection and increase the risk of damage to the immune, respiratory, cardiovascular, musculoskeletal systems and the brain. The cellular mechanisms and danger of this "second wave" effect of COVID-19 to the human body, along with the effects of aging, proper nutrition, and regular physical activity, are reviewed in this article.

Keywords: Aging; Brain; COVID-19; Cardiovascular; Immune; Muscle; Nutrition; Physical inactivity; Respiratory.

Conflict of interest statement

The authors have no conflict of interest to report.

© 2020 Chengdu Sport University. Production and hosting by Elsevier B.V. on behalf of KeAi.

Figures

Fig. 1
Fig. 1
. SARS-CoV-2 can directly attack central nervous system. The quarantine which is used to prevent the spreading of SARS-CoV-2 readily can cause depression, which has negative effects on CNS and immune system. Regular exercise with moderate intensity curbs the quarantine-associated harmful effects on the brain.
Fig. 2
Fig. 2
The detrimental effect of COVID-19 on the development of sarcopenia and frailty among people of old age. Potential influences of physical inactivity and social isolation on the pathogenesis are illustrated.

References

    1. Pan A., Liu L., Wang C., et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. J ​Am Med Assoc. 2020;323(19):1915–1923. doi: 10.1001/jama.2020.6130.
    1. Lake M.A. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond). 2020;20(2):124–127. doi: 10.7861/clinmed.2019-coron.
    1. Gabutti G., d'Anchera E., Sandri F. Coronavirus: update related to the current outbreak of COVID-19. Infect Dis Ther. 2020;8:1–13. doi: 10.1007/s40121-020-00295-5.
    1. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J ​Microbiol Immunol Infect. 2020 doi: 10.1016/j.jmii.2020.03.022. Published online.
    1. Gasmi A., Noor S., Tippairote T., Dadar M. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol. 2020;7:108409. doi: 10.1016/j.clim.2020.108409.
    1. Yuki K., Fujiogi M., Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020:108427. doi: 10.1016/j.clim.2020.108427.
    1. Scavone C., Brusco S., Bertini M. Current pharmacological treatments for COVID-19: what's next? Br J Pharmacol. 2020 doi: 10.1111/bph.15072.
    1. Siordia J.A., Jr. Epidemiology and clinical features of COVID-19: a review of current literature. J ​Clin Virol. 2020;127:104357. doi: 10.1016/j.jcv.2020.104357.
    1. Walsh N.P., Gleeson M., Shephard R.J., et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63. doi: 10.1002/eji.201040296.
    1. Martin S.A., Pence B.D., Woods J.A. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev. 2009;37(4):157–164. doi: 10.1097/JES.0b013e3181b7b57b.
    1. Lowder T., Padgett D.A., Woods J.A. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun. 2005;19(5):377–380. doi: 10.1016/j.bbi.2005.04.002.
    1. Warren K.J., Olson M.M., Thompson N.J. Exercise improves host response to influenza viral infection in obese and non-obese mice through different mechanisms. PloS One. 2015;10(6) doi: 10.1371/journal.pone.0129713.
    1. Sim Y.J., Yu S., Yoon K.J., Loiacono C.M. Chronic exercise reduces illness severity, decreases viral load, and results in greater anti-inflammatory effects than acute exercise during influenza infection. J ​Infect Dis. 2009;200(9):1434–1442. doi: 10.1086/606014.
    1. Davis J.M., Kohut M.L., Colbert L.H. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J ​Appl Physiol. 1985;83(5):1461–1466. doi: 10.1152/jappl.1997.83.5.1461. 1997.
    1. Murphy E.A., Davis J.M., Carmichael M.D. Exercise stress increases susceptibility to influenza infection. Brain Behav Immun. 2008;22(8):1152–1155. doi: 10.1016/j.bbi.2008.06.004.
    1. Lowder T., Padgett D.A., Woods J.A. Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exerc Immunol Rev. 2006;12:97–111. doi: 10.1016/j.bbi.2005.04.002.
    1. Murphy E.A., Davis J.M., Brown A.S., et al. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1354–R1358. doi: 10.1016/j.bbi.2008.06.004.
    1. Kohut M.L., Davis J.M., Jackson D.A., et al. The role of stress hormones in exercise-induced suppression of alveolar macrophage antiviral function. J ​Neuroimmunol. 1998;81(1-2):193–200. doi: 10.1016/s0165-5728(97)00179-3.
    1. Kohut M.L., Martin A.E., Senchina D.S., Lee W. Glucocorticoids produced during exercise may be necessary for optimal virus-induced IL-2 and cell proliferation whereas both catecholamines and glucocorticoids may be required for adequate immune defense to viral infection. Brain Behav Immun. 2005;19(5):423–435. doi: 10.1016/j.bbi.2005.04.006.
    1. Nieman D.C., Johanssen L.M., Lee J.W., Arabatzis K. Infectious episodes in runners before and after the Los Angeles marathon. J ​Sports Med Phys Fit. 1990;30(3):316–328. doi: 10.1249/00005768-199402000-00002.
    1. Nieman D.C. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc. 1994;26(2):128–139. doi: 10.1249/00005768-199402000-00002.
    1. Svendsen I.S., Hem E., Gleeson M. Effect of acute exercise and hypoxia on markers of systemic and mucosal immunity. Eur J Appl Physiol. 2016;116(6):1219–1229. doi: 10.1007/s00421-016-3380-4.
    1. Gleeson M., Bishop N., Oliveira M., McCauley T., Tauler P., Muhamad A.S. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports. 2012;22(3):410–417. doi: 10.1111/j.1600-0838.2010.01272.x.
    1. Rooney B.V., Bigley A.B., LaVoy E.C., et al. Lymphocytes and monocytes egress peripheral blood within minutes after cessation of steady state exercise: a detailed temporal analysis of leukocyte extravasation. Physiol Behav. 2018;194:260–267. doi: 10.1016/j.physbeh.2018.06.008.
    1. Simpson R.J., Campbell J.P., Gleeson M., et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:8–22.
    1. Weidner T.G., Cranston T., Schurr T., et al. The effect of exercise training on the severity and duration of a viral upper respiratory illness. Med Sci Sports Exerc. 1998;30(11):1578–1583. doi: 10.1097/00005768-199811000-00004.
    1. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Dres M., Demoule Diaphragm dysfunction during weaning from mechanical ventilation: an underestimated phenomenon with clinical implications. Crit Care. 2018;22(1):73. doi: 10.1186/s13054-018-1992-2.
    1. Vassilakopoulos T., Petrof B.J. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;169(3):336–341. doi: 10.1164/rccm.200304-489CP.
    1. McKenzie D.C. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46(6):381–384. doi: 10.1136/bjsports-2011-090824.
    1. Powers S.K., Bomkamp M., Ozdemir M., et al. Mechanisms of exercise-induced preconditioning in skeletal muscles. Redox Biol. 2020:101462. doi: 10.1016/j.redox.2020.101462.
    1. Morton A.B., Smuder A.J., Wiggs M.P., et al. Increased SOD2 in the diaphragm contributes to exercise-induced protection against ventilator-induced diaphragm dysfunction. Redox Biol. 2019;20:402–413. doi: 10.1016/j.redox.2018.10.005.
    1. Smuder A.J., Min K., Hudson M.B., et al. Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J ​Appl Physiol. 2012;112(3):501–510. doi: 10.1152/japplphysiol.01086.2011.
    1. Smuder A.J., Morton A.B., Hall S.E., et al. Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. J ​Cachexia Sarcopenia Muscle. 2019;10(4):767–781. doi: 10.1002/jcsm.12427.
    1. Sollanek K.J., Burniston J.G., Kavazis A.N., et al. Global proteome changes in the rat diaphragm induced by endurance exercise training. PloS One. 2017;12(1) doi: 10.1371/journal.pone.0171007.
    1. Powers S.K., Hudson M.B., Nelson W.B., et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011;39(7):1749–1759. doi: 10.1097/CCM.0b013e3182190b62.
    1. Booth F.W., Gordon S.E., Carlson C.J., et al. Waging war on modern chronic diseases: primary prevention through exercise biology. J ​Appl Physiol. 2000;88:774–787. doi: 10.1111/j.1600-0838.2000.100509.x.
    1. Current Lightfoot. Understanding of the genetic basis for physical activity. J ​Nutr. 2011;141(3):526–530. doi: 10.3945/jn.110.127290.
    1. Norman L.G. The health of bus drivers a study in London transport. Lancet. 1958;272(7051):807–812. doi: 10.1016/S0140-6736(58)90373-8.
    1. Morris J.N., Crawford M.D. Coronary heart disease and physical activity of work: evidence of a national necropsy survey. Br Med J. 1958;20(12):1445–1496. doi: 10.1136/bmj.2.5111.1485.
    1. Mandsager K., Harb S., Cremer P., et al. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1(6) doi: 10.1001/jamanetworkopen.2018.3605.
    1. Lee I.M., Shiroma E.J., Kamada M., et al. Association of step volume and intensity with all-cause mortality in older women. JAMA Int Med. 2019;179(8):1105. doi: 10.1001/jamanetworkopen.2018.3605.
    1. Inciardi R.M., Lupi L., Zaccone G., et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1096. Published online March 27.
    1. Bonow RO, Fonarow GC, O'Gara PT, et al. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. Published online March 27. DOI:10.1001/jamacardio.2020.1105.
    1. Yang C., Jin Z. An acute respiratory infection runs into the most common noncommunicable epidemic—COVID-19 and cardiovascular diseases. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.0934. Published online March 25.
    1. Sribhutorn A., Phrommintikul A., Wongcharoen W., et al. The modification effect of influenza vaccine on prognostic indicators for cardiovascular events after acute coronary syndrome: observations from an influenza vaccination trial. Cardiol Res Pract. 2016;2016:4097471. doi: 10.1155/2016/4097471.
    1. Thompson P.D., Dec G.W. We need better data on how to manage myocarditis in athletes. Eur J Prev Cardiol. 2020:1–3. doi: 10.1177/2047487320915545. 0(0)
    1. Blocken B., Malizia F., van Druenen T., et al. Towards aerodynamically equivalent COVID19 1.5 m social distancing for walking and running. 2020. Preprint at.
    1. Hawley J.A., Hargreaves M., Joyner M.J., et al. Integrative biology of exercise. Cell. 2014;159:738–749. doi: 10.1016/j.cell.2014.10.029.
    1. Hamilton M.T. The role of skeletal muscle contractile duration throughout the whole day: reducing sedentary time and promoting universal physical activity in all people. J ​Physiol. 2018;596:1331–1340. doi: 10.1113/JP273284.
    1. Pette D. Historical Perspectives: plasticity of mammalian skeletal muscle. J ​Appl Physiol. 2001;90:1119–1124. doi: 10.1152/jappl.2001.90.3.1119.
    1. Vina J., Sanchis-Gomar F., Martinez-Bello V., et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12. doi: 10.1111/j.1476-5381.2012.01970.x.
    1. Bowden Davies K.A., Pickles S., Sprung V.S., et al. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab. 2019;10 doi: 10.1177/2042018819888824. 2042018819888824.
    1. Rabøl R., Petersen K.F., Dufour S., Flannery C., Shulman G.I. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108:13705–13709. doi: 10.1073/pnas.1110105108.
    1. Nascimento C.M., Ingles M., Salvador-Pascual A., et al. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med. 2019;132:42–49. doi: 10.1016/j.freeradbiomed.2018.08.035.
    1. Arc-Chagnaud C., Py G., Fovet T., Roumanille R., et al. Evaluation of an antioxidant and anti-inflammatory cocktail against human hypoactivity-induced skeletal muscle deconditioning. Front Physiol. 2020;11:71. doi: 10.3389/fphys.2020.00071.
    1. Wackerhage H., Schoenfeld B.J., Hamilton D.L., et al. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J ​Appl Physiol. 2019;126:30–43. doi: 10.1152/japplphysiol.00685.2018.
    1. Hood D.A., Tryon L.D., Carter H.N., et al. Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J. 2016;473:2295–2314. doi: 10.1042/BCJ20160009.
    1. Chan D.C. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–996. doi: 10.1146/annurev.cellbio.22.010305.104638.
    1. Youle R.J., Narendra D.P. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9. doi: 10.1038/nrm3028.
    1. Ji, L. L., D. Yeo and C. Kang. Muscle disuse atrophy caused by discord of intracellular signaling. Antioxidants Redox Signal. DOI: 10.1089/ars.2020.8072.
    1. Jackman R.W., Kandarian S.C. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004;287:C834–C843. doi: 10.1152/ajpcell.00579.2003.
    1. Timmons J.A., Norrbom J., Scheele C., et al. Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics. 2006;87:165–172. doi: 10.1016/j.ygeno.2005.09.007.
    1. Schiaffino S., Dyar K.A., Ciciliot S., et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–4314. doi: 10.1111/febs.12253.
    1. Kang C., Goodman C.A., Hornberger T.A., et al. PGC-1α over-expression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. Faseb J. 2015;29:4092–4106. doi: 10.1096/fj.14-266619.
    1. Gu J., Gong E., Zhang B., et al. Multiple organ infection and the pathogenesis of SARS. J ​Exp Med. 2005;202(3):415–424. doi: 10.1084/jem.20050828.
    1. Li Y.C., Bai W.Z., Hirano N., et al. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J ​Comp Neurol. 2013;521(1):203–212. doi: 10.1002/cne.23171.
    1. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J ​Med Virol. 2020 doi: 10.1002/jmv.25728.
    1. Dowlati Y., Herrmann N., Swardfager W., et al. A ​meta-analysis of cytokines in major depression. Biol Psychiatr. 2010;67(5):446–457. doi: 10.1016/j.biopsych.2009.09.033.
    1. Kruger K., Mooren F.C., Pilat C. The immunomodulatory effects of physical activity. Curr Pharmaceut Des. 2016;22(24):3730–3748. doi: 10.2174/1381612822666160322145107.
    1. Radak Z., Taylor A.W., Ohno H., et al. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev. 2001;7:90–107. doi: 10.1007/s004210000352.
    1. Kandola A., Ashdown-Franks G., Hendrikse J., et al. Physical activity and depression: towards understanding the antidepressant mechanisms of physical activity. Neurosci Biobehav Rev. 2019;107:525–539. doi: 10.1007/s004210000352.
    1. Boecker H., Sprenger T., Spilker M.E., et al. The runner's high: opioidergic mechanisms in the human brain. Cerebr Cortex. 2008;18(11):2523–2531. doi: 10.1093/cercor/bhn013.
    1. Balchin R., Linde J., Blackhurst D., et al. Sweating away depression? The impact of intensive exercise on depression. J ​Affect Disord. 2016;200:218–221. doi: 10.1016/j.jad.2016.04.030.
    1. Li L.Q., Huang T., Wang Y.Q., et al. Novel coronavirus patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J ​Med Virol. 2019 doi: 10.1002/jmv.25757. 2020.
    1. Wang R., Pan M., Zhang X., et al. Epidemiological and clinical features of 125 hospitalized patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis. April 2020 doi: 10.1016/j.ijid.2020.03.070.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. J ​Am Med Assoc. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648.
    1. Wu C., Chen X., Cai Y., et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020 doi: 10.1001/jamainternmed.2020.0994. Published online March 13.
    1. Herridge M.S., Tansey C.M., Matté A., et al. Functional disability 5 years after acute respiratory distress syndrome. N ​Engl J Med. 2011;364(14):1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Herridge M.S., Moss M., Hough C.L., et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42(5):725–738. doi: 10.1007/s00134-016-4321-8.
    1. Hoogendijk E.O., Afilalo J., Ensrud K.E., et al. Frailty: implications for clinical practice and public health. Lancet. 2019;394(10206):1365–1375. doi: 10.1016/S0140-6736(19)31786-6.
    1. Cruz-Jentoft A.J., Sayer A.A. Sarcopenia. Lancet. 2019;393(10191):2636–2646. doi: 10.1016/S0140-6736(19)31138-9.
    1. Jawaid A. Protecting older adults during social distancing. Science. 2020;368(6487):141–145. doi: 10.1126/science.abb7885.
    1. Flaatten H., De Lange D.W., Morandi A., et al. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years) Intensive Care Med. 2017;43(12):1820–1828. doi: 10.1007/s00134-017-4940-8.
    1. Ferrante L.E., Pisani M.A., Murphy T.E., Gahbauer E.A., Leo-Summers L.S., Gill T.M. The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest. 2018;153(6):1378–1386. doi: 10.1016/j.chest.2018.03.007.
    1. Laviano A., Koverech A., Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19) Nutrition. 2020;74(6):110834 1–2. doi: 10.1016/j.nut.2020.110834.
    1. Li T., Zhang Y., Gong C., et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr. 2020 doi: 10.1038/s41430-020-0642-3. published online.
    1. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Wang D., Hu B., Hu C., Zhu F., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J ​Am Med Assoc. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.
    1. Grant W.B., Lahore H., McDonnell S.L., et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988. doi: 10.3390/nu12040988.
    1. Boretti A., Banik B.K. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020;12(6):1–8. doi: 10.1016/j.phanu.2020.100190.
    1. Jayawardena R., Sooriyaarachchi P., Chourdakis M., et al. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020;14(4):367–382. doi: 10.1016/j.dsx.2020.04.015.
    1. Semba, R. D. Vitamin A and immunity to viral, bacterial and protozoan infections. Proc Nutr Soc. 58(3): 719-727. DOI: 10.1017/s0029665199000944.
    1. Huang Z., Liu Y., Qi G., et al. Role of vitamin A in the immune system. J ​Clin Med. 2018;7(9):258. doi: 10.3390/jcm7090258.
    1. Zhang L., Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J ​Med Virol. 2020;92(5):479–490. doi: 10.1002/jmv.25707.
    1. Lewis E.D., Meydani S.N., Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487–494. doi: 10.1002/iub.1976.
    1. Zhang J.E., Taylor W., Bennett K., et al. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr. 2020 doi: 10.1093/ajcn/nqaa095. published online.
    1. te Velthuis A.J., van den Worm S.H., et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176 1–e100117610. doi: 10.1371/journal.ppat.1001176.
    1. Fauci A.S. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001;32(5):675–685. doi: 10.1086/319235.
    1. Murray C.J., Lopez A.D. Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet. 1997;349(9064):1498–1504. doi: 10.1016/S0140-6736(96)07492-2.
    1. Naghavi M., Abajobir T., Bettcher D., et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390:1151–1210. doi: 10.1016/S0140-6736(17)32152-9.
    1. Piercy K.L., Troiano R.P., Ballard R.M., et al. The physical activity guidelines for Americans. J ​Am Med Assoc. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854.
    1. Anderson E., Durstine J.L. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci. 2019;1(1):3–10. doi: 10.1016/j.smhs.2019.08.006.
    1. World Health Organization . 2011. Global Strategy on Diet, Physical Activity and Health.
    1. World Health Organization . 2011. Global Strategy on Diet, Physical Activity and Health.
    1. Norton S., Matthews F.E., Barnes D.E., et al. Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol. 2014;13:788–794. doi: 10.1016/S1474-4422(14)70136-X.
    1. Liguori G. eleventh ed. Wolters Kluwer; Philadelphia, PA: 2017. ACSM's Guidelines for Exercise Testing and Prescription.

Source: PubMed

3
Suscribir