Exercise Training Induces a Shift in Extracellular Redox Status with Alterations in the Pulmonary and Systemic Redox Landscape in Asthma

Anna Freeman, Doriana Cellura, Magdalena Minnion, Bernadette O Fernandez, Cosma Mirella Spalluto, Denny Levett, Andrew Bates, Timothy Wallis, Alastair Watson, Sandy Jack, Karl J Staples, Michael P W Grocott, Martin Feelisch, Tom M A Wilkinson, Anna Freeman, Doriana Cellura, Magdalena Minnion, Bernadette O Fernandez, Cosma Mirella Spalluto, Denny Levett, Andrew Bates, Timothy Wallis, Alastair Watson, Sandy Jack, Karl J Staples, Michael P W Grocott, Martin Feelisch, Tom M A Wilkinson

Abstract

Redox dysregulation and oxidative stress have been implicated in asthma pathogenesis. Exercise interventions improve symptoms and reduce inflammation in asthma patients, but the underlying mechanisms remain unclear. We hypothesized that a personalised exercise intervention would improve asthma control by reducing lung inflammation through modulation of local and systemic reactive species interactions, thereby increasing antioxidant capacity. We combined deep redox metabolomic profiling with clinical assessment in an exploratory cohort of six female patients with symptomatic asthma and studied their responses to a metabolically targeted exercise intervention over 12 weeks. Plasma antioxidant capacity and circulating nitrite levels increased following the intervention (p = 0.028) and lowered the ratio of reduced to oxidised glutathione (p = 0.029); this was accompanied by improvements in physical fitness (p = 0.046), symptoms scores (p = 0.020), quality of life (p = 0.046), lung function (p = 0.028), airway hyperreactivity (p = 0.043), and eosinophilic inflammation (p = 0.007). Increased physical fitness correlated with improved plasma antioxidant capacity (p = 0.019), peak oxygen uptake and nitrite changes (p = 0.005), the latter also associated with reductions in peripheral blood eosinophil counts (p = 0.038). Thus, increases in "redox resilience" may underpin the clinical benefits of exercise in asthma. An improved understanding of exercise-induced alterations in redox regulation offers opportunities for greater treatment personalisation and identification of new treatment targets.

Keywords: asthma; exercise; inflammation; oxidative stress; reactive species interactome.

Conflict of interest statement

T.M.A.W reports grants and personal fees from AstraZeneca, personal fees and other from my mhealth, grants and personal fees from GlaxoSmithKline, grants and personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, grants, and personal fees from Synairgen, outside the submitted work. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Changes in pattern of responses of the free thiol metabolome (AJ). Data presented for n = 6 before and after acute physiological challenge of a cardiopulmonary exercise test, presented as mean and SEM, with overlaid individual data (circles, squares, up- and downward triangles). Data presented in nM or concentration ratio. Green bars = baseline, orange bars = week 3, blue bars = week 6 and grey bars = week 12. Abbreviations: GSH: reduced gluthathione; GSSG: oxidised glutathione; Cys: cysteine, CySS: cystine; HCys: homocysteine, HCySS: homocystine, * = p < 0.05.
Figure 2
Figure 2
Pattern of response to changes in concentration of total and bound thiols in plasma (AH). Data presented for before and after acute physiological challenge of a cardiopulmonary exercise test at each sampling point throughout the training intervention, presented as mean and SEM, with overlaid individual data (circles, squares and triangles; for the sake of direct comparison to free thiols, all concentrations are presented in [nM]). Green bars = baseline, orange bars = week 3, blue bars = week 6, and grey bars = week 12. Abbreviations: GSH: gluthathione; Cys: cysteine; HCys: homocysteine, * = p < 0.05.
Figure 3
Figure 3
Pattern of redox responses to pre- and post-acute exercise challenge at each sampling point in study for plasma concentrations of nitrite (A), nitrate (B), nitroso species (C), TBARS (D) and FRAP (E), presented as mean and SEM, with individual data (circles, squares and triangles) overlaid. Data presented in µM or nM. Green bars = baseline, orange bars = week 3, blue bars = week 6, grey bars = week 12. Abbreviations: CPET: cardiopulmonary exercise test; RXNO: total nitroso species; TBARS: thiobarbituric acid reactive substances; FRAP: ferric reducing ability of plasma. * = p < 0.05.
Figure 4
Figure 4
Significant correlations (Spearman’s rho correlation) between improvements in physical fitness, increased redox capacity and inflammation. (A) A greater increase in maximum oxygen uptake is associated with a greater increase in pre-CPET nitrite from baseline (r = 0.943, p = 0.019), (B) a greater increase in oxygen uptake at AT strongly correlates with a larger increase in FRAP (r = 0.886, p = 0.019), and (C) a greater increase in pre-CPET nitrite significantly correlates with a greater reduction in peripheral blood eosinophil levels (r = −0.837, p = 0.038). Abbreviations AT: (oxygen uptake at) anaerobic threshold; FRAP: ferric reducing ability of plasma.

References

    1. Neufer P.D., Bamman M.M., Muoio D., Bouchard C., Cooper D.M., Goodpaster B.H., Booth F.W., Kohrt W.M., Gerszten R.E., Mattson M.P., et al. Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metab. 2015;22:4–11. doi: 10.1016/j.cmet.2015.05.011.
    1. West M.A., Astin R., Moyses H.E., Cave J., White D., Levett D.Z.H., Bates A., Brown G., Grocott M.P.W., Jack S. Exercise prehabilitation may lead to augmented tumor regression following neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Acta Oncol. 2019;58:588–595. doi: 10.1080/0284186X.2019.1566775.
    1. Contrepois K., Wu S., Moneghetti K.J., Hornburg D., Ahadi S., Tsai M.-S., Metwally A.A., Wei E., Lee-McMullen B., Quijada J.V., et al. Molecular Choreography of Acute Exercise. Cell. 2020;181:1112–1130.e16. doi: 10.1016/j.cell.2020.04.043.
    1. Powers S.K., Jackson M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007.
    1. Margaritelis N., Paschalis V., Theodorou A., Kyparos A., Nikolaidis M. Redox basis of exercise physiology. Redox Biol. 2020;35:101499. doi: 10.1016/j.redox.2020.101499.
    1. Ristow M., Zarse K., Oberbach A., Klöting N., Birringer M., Kiehntopf M., Stumvoll M., Kahn C.R., Blüher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA. 2009;106:8665–8670. doi: 10.1073/pnas.0903485106.
    1. Jiang L., Diaz P.T., Best T.M., Stimpfl J.N., He F., Zuo L. Molecular characterization of redox mechanisms in allergic asthma. Ann. Allergy Asthma Immunol. 2014;113:137–142. doi: 10.1016/j.anai.2014.05.030.
    1. Page L.K., Staples K.J., Spalluto C.M., Watson A., Wilkinson T. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front. Immunol. 2021;12:939. doi: 10.3389/fimmu.2021.653969.
    1. Comhair S.A., Erzurum S.C. Redox Control of Asthma: Molecular Mechanisms and Therapeutic Opportunities. Antioxid. Redox Signal. 2010;12:93–124. doi: 10.1089/ars.2008.2425.
    1. Sanders S.P., Zweier J.L., Harrison S.J., Trush A.M., Rembish S.J., Liu M.C. Spontaneous oxygen radical production at sites of antigen challenge in allergic subjects. Am. J. Respir. Crit. Care Med. 1995;151:1725–1733. doi: 10.1164/ajrccm.151.6.7767513.
    1. Nadeem A., Raj H.G., Chhabra S.K. Increased Oxidative Stress in Acute Exacerbations of Asthma. J. Asthma. 2005;42:45–50. doi: 10.1081/JAS-200044774.
    1. Fitzpatrick A.M., Stephenson S.T., Hadley G.R., Burwell L., Penugonda M., Simon D.M., Hansen J., Jones D.P., Brown L.A.S. Thiol redox disturbances in children with severe asthma are associated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)–like 2. J. Allergy Clin. Immunol. 2011;127:1604–1611. doi: 10.1016/j.jaci.2011.03.031.
    1. Stephenson S.T., Brown L.A.S., Helms M.N., Qu H., Brown S.D., Brown M.R., Fitzpatrick A.M. Cysteine oxidation impairs systemic glucocorticoid responsiveness in children with difficult-to-treat asthma. J. Allergy Clin. Immunol. 2015;136:454–461.e9. doi: 10.1016/j.jaci.2015.01.023.
    1. Janssen-Heininger Y., Reynaert N.L., van der Vliet A., Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol. 2020;33:101516. doi: 10.1016/j.redox.2020.101516.
    1. Chia S.B., Elko E.A., Aboushousha R., Manuel A.M., van de Wetering C., Druso J.E., van der Velden J., Seward D.J., Anathy V., Irvin C.G., et al. Dysregulation of the glutaredoxin/S-glutathionylation redox axis in lung diseases. Am. J. Physiol. 2020;318:C304–C327. doi: 10.1152/ajpcell.00410.2019.
    1. Suzuki Y., Saito J., Munakata M., Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol. Int. 2021;70:181–189. doi: 10.1016/j.alit.2020.10.003.
    1. Webb R., Hughes M.G., Thomas A.W., Morris K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants. 2017;6:63. doi: 10.3390/antiox6030063.
    1. Cumpstey A.F., Minnion M., Fernandez B.O., Mikus-Lelinska M., Mitchell K., Martin D.S., Grocott M.P., Feelisch M. Pushing arterial-venous plasma biomarkers to new heights: A model for personalised redox metabolomics? Redox Biol. 2019;21:101113. doi: 10.1016/j.redox.2019.101113.
    1. Done A.J., Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016;10:191–199. doi: 10.1016/j.redox.2016.10.003.
    1. Pakhale S., Luks V., Burkett A., Turner L. Effect of physical training on airway inflammation in bronchial asthma: A systematic review. BMC Pulm. Med. 2013;13:38. doi: 10.1186/1471-2466-13-38.
    1. Hansen E.S.H., Pitzner-Fabricius A., Toennesen L.L., Rasmusen H.K., Hostrup M., Hellsten Y., Backer V., Henriksen M. Effect of aerobic exercise training on asthma in adults: A systematic review and meta-analysis. Eur. Respir. J. 2020;56:2000146. doi: 10.1183/13993003.00146-2020.
    1. Cortese-Krott M.M., Koning A., Kuhnle G.G.C., Nagy P., Bianco C.L., Pasch A., Wink D.A., Fukuto J.M., Jackson A.A., Van Goor H., et al. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid. Redox Signal. 2017;27:684–712. doi: 10.1089/ars.2017.7083.
    1. Santolini J., Wootton A.S., Jackson A.A., Feelisch M. The Redox architecture of physiological function. Curr. Opin. Physiol. 2019;9:34–47. doi: 10.1016/j.cophys.2019.04.009.
    1. Codella R., Chirico A., Lucidi F., Ferrulli A., La Torre A., Luzi L. The immune-modulatory effects of exercise should be favorably harnessed against COVID-19. J. Endocrinol. Investig. 2021;44:1119–1122. doi: 10.1007/s40618-020-01403-5.
    1. Marrocco I., Altieri F., Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046.
    1. Cumpstey A.F., Clark A.D., Santolini J., Jackson A.A., Feelisch M. COVID-19: A Redox Disease—What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid. Redox Signal. 2021;35:1226–1268. doi: 10.1089/ars.2021.0017.
    1. Juniper E.F., Bousquet J., Abetz L., Bateman E.D. Identifying ‘well-controlled’ and ‘not well-controlled’ asthma using the Asthma Control Questionnaire. Respir. Med. 2006;100:616–621. doi: 10.1016/j.rmed.2005.08.012.
    1. Levett D., Jack S., Swart M., Carlisle J., Wilson J., Snowden C., Riley M., Danjoux G., Ward S., Older P., et al. Perioperative cardiopulmonary exercise testing (CPET): Consensus clinical guidelines on indications, organization, conduct, and physiological interpretation. Br. J. Anaesth. 2018;120:484–500. doi: 10.1016/j.bja.2017.10.020.
    1. West M., Loughney L., Lythgoe D., Barben C., Sripadam R., Kemp G., Grocott M., Jack S. Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: A blinded interventional pilot study. Br. J. Anaesth. 2015;114:244–251. doi: 10.1093/bja/aeu318.
    1. Horváth I., Hunt J., Barnes P.J. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005;26:523–548. doi: 10.1183/09031936.05.00029705.
    1. Rassaf T., Bryan N.S., Kelm M., Feelisch M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic. Biol. Med. 2002;33:1590–1596. doi: 10.1016/S0891-5849(02)01183-8.
    1. Feelisch M., Rassaf T., Mnaimneh S., Singh N., Bryan N.S., Jourd’Heuil D., Kelm M. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: Implications for the fate of NO in vivo. FASEB J. 2002;16:1775–1785. doi: 10.1096/fj.02-0363com.
    1. Sutton T., Minnion M., Barbarino F., Koster G., Fernandez B.O., Cumpstey A., Wischmann P., Madhani M., Frenneaux M., Postle A., et al. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biol. 2018;16:359–380. doi: 10.1016/j.redox.2018.02.012.
    1. Koning A.M., Meijers W.C., Pasch A., Leuvenink H., Frenay A.-R.S., Dekker M.M., Feelisch M., de Boer R.A., van Goor H. Serum free thiols in chronic heart failure. Pharmacol. Res. 2016;111:452–458. doi: 10.1016/j.phrs.2016.06.027.
    1. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017;524:13–30. doi: 10.1016/j.ab.2016.10.021.
    1. De Leon J.A.D., Borges C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020;12:159. doi: 10.3791/61122.
    1. Juniper E.F., Buist A.S., Cox F.M., Ferrie P.J., King D.R. Validation of a Standardized Version of the Asthma Quality of Life Questionnaire. Chest. 1999;115:1265–1270. doi: 10.1378/chest.115.5.1265.
    1. Wanger J., Clausen J.L., Coates A., Pedersen O.F., Brusasco V., Burgos F., Casaburi R., Crapo R., Enright P., Van Der Grinten C.P.M., et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005;26:511–522. doi: 10.1183/09031936.05.00035005.
    1. Azim A., Mistry H., Freeman A., Barber C., Newell C., Gove K., Thirlwall Y., Harvey M., Bentley K., Knight D., et al. Protocol for the Wessex AsThma CoHort of difficult asthma (WATCH): A pragmatic real-life longitudinal study of difficult asthma in the clinic. BMC Pulm. Med. 2019;19:99. doi: 10.1186/s12890-019-0862-2.
    1. Juniper E.F., Svensson K., Mörk A.-C., Ståhl E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir. Med. 2005;99:553–558. doi: 10.1016/j.rmed.2004.10.008.
    1. Kothmann E., Batterham A.M., Owen S.J., Turley A.J., Cheesman M., Parry A., Danjoux G. Effect of short-term exercise training on aerobic fitness in patients with abdominal aortic aneurysms: A pilot study. Br. J. Anaesth. 2009;103:505–510. doi: 10.1093/bja/aep205.
    1. Oberfeld D., Franke T. Evaluating the robustness of repeated measures analyses: The case of small sample sizes and nonnormal data. Behav. Res. Methods. 2012;45:792–812. doi: 10.3758/s13428-012-0281-2.
    1. Azim A., Freeman A., Lavenu A., Mistry H., Haitchi H.M., Newell C., Cheng Y., Thirlwall Y., Harvey M., Barber C., et al. New Perspectives on Difficult Asthma; Sex and Age of Asthma-Onset Based Phenotypes. J. Allergy Clin. Immunol. Pract. 2020;8:3396–3406.e4. doi: 10.1016/j.jaip.2020.05.053.
    1. Jones D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006;8:1865–1879. doi: 10.1089/ars.2006.8.1865.
    1. Sawa T., Ono K., Tsutsuki H., Zhang T., Ida T., Nishida M., Akaike T. Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Adv. Microb. Physiol. 2018;72:1–28. doi: 10.1016/bs.ampbs.2018.01.002.
    1. Freeman A.T., Hill D., Newell C., Moyses H., Azim A., Knight D., Presland L., Harvey M., Haitchi H.M., Watson A., et al. Patient perceived barriers to exercise and their clinical associations in difficult asthma. Asthma Res. Pract. 2020;6:5. doi: 10.1186/s40733-020-00058-6.
    1. de Sousa C.V., Sales M.M., Rosa T.S., Lewis J.E., de Andrade R.V., Simões H.G. The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis. Sports Med. 2017;47:277–293. doi: 10.1007/s40279-016-0566-1.
    1. Fitzpatrick A.M., Teague W.G., Holguin F., Yeh M., Brown L.A.S. Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress. J. Allergy Clin. Immunol. 2009;123:146–152.e8. doi: 10.1016/j.jaci.2008.10.047.
    1. Fitzpatrick A.M., Teague W.G., Burwell L., Brown M.S., Brown L.A.S. NIH/NHLBI Severe Asthma Research Program Glutathione Oxidation Is Associated with Airway Macrophage Functional Impairment in Children with Severe Asthma. Pediatr. Res. 2011;69:154–159. doi: 10.1203/PDR.0b013e3182026370.
    1. McKenna H.T., O’Brien K.A., Fernandez B.O., Minnion M., Tod A., McNally B.D., West J.A., Griffin J.L., Grocott M.P., Mythen M.G., et al. Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness. Redox Biol. 2021;41:101907. doi: 10.1016/j.redox.2021.101907.
    1. Seifi-Skishahr F., Damirchi A., Farjaminezhad M., Babaei P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem. Res. Int. 2016;2016:3757623. doi: 10.1155/2016/3757623.
    1. Kuo H.-K., Yen C.-J., Bean J.F. Levels of homocysteine are inversely associated with cardiovascular fitness in women, but not in men: Data from the National Health and Nutrition Examination Survey 1999–2002. J. Intern. Med. 2005;258:328–335. doi: 10.1111/j.1365-2796.2005.01546.x.
    1. Randeva H.S., Lewandowski K., Drzewoski J., Brooke-Wavell K., O’Callaghan C., Czupryniak L., Hillhouse E.W., Prelevic G.M. Exercise Decreases Plasma Total Homocysteine in Overweight Young Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2002;87:4496–4501. doi: 10.1210/jc.2001-012056.
    1. Iglesias-Gutiérrez E., Egan B., Martinez A.E.D., Penalvo J.L., González-Medina A., Camblor P.M., O’Gorman D., Úbeda N. Transient Increase in Homocysteine but Not Hyperhomocysteinemia during Acute Exercise at Different Intensities in Sedentary Individuals. PLoS ONE. 2012;7:e51185. doi: 10.1371/journal.pone.0051185.
    1. Avci A.G., Emre A. Homocysteine: A risk factor for the development of cardiovascular events in chronic respiratory diseases. Biomed. Res. Health Sci. Bio. Converg. Technol. 2016;27:S450–S453.
    1. Vallance P. In: Homocysteine in Health and Disease. Carmel R., Jacobsen D.W., editors. Cambridge University Press; Cambridge, UK: 2001.
    1. Zou C.-G., Banerjee R. Homocysteine and Redox Signaling. Antioxid. Redox Signal. 2005;7:547–559. doi: 10.1089/ars.2005.7.547.
    1. Vitvitsky V., Mosharov E., Tritt M., Ataullakhanov F., Banerjee R. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep. 2003;8:57–63. doi: 10.1179/135100003125001260.
    1. Morton R.J., Henry R.L., Thomas P.S. Exhaled breath condensate nitrite/nitrate and pH in relation to pediatric asthma control and exhaled nitric oxide. Pediatr Pulmonol. 2006;41:929–936.
    1. Zetterquist W., Marteus H., Hedlin G., Alving K. Increased exhaled nitrite in children with allergic asthma is not related to nitric oxide formation. Clin. Respir. J. 2008;2:166–174. doi: 10.1111/j.1752-699X.2008.00057.x.
    1. Malinovschi A., Pizzimenti S., Sciascia S., Heffler E., Badiu I., Rolla G. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control. Respir. Med. 2011;105:1007–1013. doi: 10.1016/j.rmed.2010.12.016.
    1. Rassaf T., Lauer T., Heiss C., Balzer J., Mangold S., Leyendecker T., Rottler J., Drexhage C., Meyer C., Kelm M. Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br. J. Sports Med. 2007;41:669–673. doi: 10.1136/bjsm.2007.035758.
    1. Deveci F., Ilhan N., Turgut T., Akpolat N., Kirkil G., Muz M. Glutathione and nitrite in induced sputum from patients with stable and acute asthma compared with controls. Ann. Allergy Asthma Immunol. 2004;93:91–97. doi: 10.1016/S1081-1206(10)61452-4.
    1. Ganas K., Loukides S., Papatheodorou G., Panagou P., Kalogeropoulos N. Total nitrite/nitrate in expired breath condensate of patients with asthma. Respir. Med. 2001;95:649–654. doi: 10.1053/rmed.2001.1117.
    1. Maeda S., Miyauchi T., Kakiyama T., Sugawara J., Iemitsu M., Irukayama-Tomobe Y., Murakami H., Kumagai Y., Kuno S., Matsuda M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001;69:1005–1016. doi: 10.1016/S0024-3205(01)01192-4.
    1. Maeda S., Tanabe T., Otsuki T., Sugawara J., Iemitsu M., Miyauchi T., Kuno S., Ajisaka R., Matsuda M. Moderate Regular Exercise Increases Basal Production of Nitric Oxide in Elderly Women. Hypertens. Res. 2004;27:947–953. doi: 10.1291/hypres.27.947.
    1. Wu W., Chen Y., Hazen S.L. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J. Biol. Chem. 1999;274:25933–25944. doi: 10.1074/jbc.274.36.25933.
    1. Gaston B., Singel D., Doctor A., Stamler J.S. S-Nitrosothiol Signaling in Respiratory Biology. Am. J. Respir. Crit. Care Med. 2006;173:1186–1193. doi: 10.1164/rccm.200510-1584PP.
    1. Jones A.M., Vanhatalo A., Seals D.R., Rossman M.J., Piknova B., Jonvik K.L. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med. Sci. Sports Exerc. 2021;53:280–294. doi: 10.1249/MSS.0000000000002470.
    1. Piknova B., Park J.W., Lam K.K., Schechter A.N. Nitrate as a source of nitrite and nitric oxide during exercise hyperemia in rat skeletal muscle. Nitric Oxide. 2016;55–56:54–61. doi: 10.1016/j.niox.2016.03.005.
    1. Li H., Samouilov A., Liu X., Zweier J.L. Characterization of the Magnitude and Kinetics of Xanthine Oxidase-Catalyzed Nitrate Reduction: Evaluation of Its Role in Nitrite and Nitric Oxide Generation in Anoxic Tissues. Biochemistry. 2003;42:1150–1159. doi: 10.1021/bi026385a.
    1. Feelisch M., Fernandez B.O., Bryan N.S., Garcia-Saura M.F., Bauer S., Whitlock D.R., Ford P.C., Janero D.R., Rodriguez J., Ashrafian H. Tissue Processing of Nitrite in Hypoxia: An Intricate Interplay of Nitric Oxide-Generating and -Scavenging Systems. J. Biol. Chem. 2008;283:33927–33934. doi: 10.1074/jbc.M806654200.
    1. Totzeck M., Hendgen-Cotta U.B., Rammos C., Frommke L.-M., Knackstedt C., Predel H.-G., Kelm M., Rassaf T. Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide. 2012;27:75–81. doi: 10.1016/j.niox.2012.05.003.
    1. Sriboonyong T., Kawamatawong T., Sriwantana T., Srihirun S., Titapiwatanakun V., Vivithanaporn P., Pornsuriyasak P., Sibmooh N., Kamalaporn H. Efficacy and safety of inhaled nebulized sodium nitrite in asthmatic patients. Pulm. Pharmacol. Ther. 2021;66:101984. doi: 10.1016/j.pupt.2020.101984.
    1. Lundberg J.O., Weitzberg E., Gladwin M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008;7:156–167. doi: 10.1038/nrd2466.
    1. Bryan N.S., Fernandez B.O., Bauer S.M., Garcia-Saura M.F., Milsom A.B., Rassaf T., Maloney E.R., Bharti A., Rodriguez J., Feelisch M. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat. Chem. Biol. 2005;1:290–297. doi: 10.1038/nchembio734.
    1. Feelisch M., Akaike T., Griffiths K., Ida T., Prysyazhna O., Goodwin J.J., Gollop N.D., Fernandez B.O., Minnion M., Cortese-Krott M.M., et al. Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling. Cardiovasc. Res. 2020;116:51–62. doi: 10.1093/cvr/cvz202.
    1. Stucki D., Steinhausen J., Westhoff P., Krahl H., Brilhaus D., Massenberg A., Weber A.P.M., Reichert A.S., Brenneisen P., Stahl W. Endogenous Carbon Monoxide Signaling Modulates Mitochondrial Function and Intracellular Glucose Utilization: Impact of the Heme Oxygenase Substrate Hemin. Antioxidants. 2020;9:652. doi: 10.3390/antiox9080652.
    1. de Souza A.R.W., Gallo D., Lee G.R., Katsuyama E., Schaufler A., Weber J., Csizmadia E., Tsokos G.C., Koch L.G., Britton S.L., et al. Skeletal muscle heme oxygenase-1 activity regulates aerobic capacity. Cell Rep. 2021;35:109018. doi: 10.1016/j.celrep.2021.109018.
    1. Adenan D.M., Jaafar Z., Jayapalan J., Aziz A.A. Plasma antioxidants and oxidative stress status in obese women: Correlation with cardiopulmonary response. Peer J. 2020;8:e9230. doi: 10.7717/peerj.9230.
    1. Sakelliou A., Fatouros I.G., Athanailiidis I., Tsoukas D., Chatzinikolaou A., Draganidis D., Jamurtas A.Z., Liacos C., Papassotiriou I., Mandalidis D., et al. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. Oxidative Med. Cell. Longev. 2016;2016:2840643. doi: 10.1155/2016/2840643.
    1. Watson A., Wilkinson T.M.A., Freeman A. Evidence Around the Impact of Pulmonary Rehabilitation and Exercise on Redox Status in COPD: A Systematic Review. Front. Sports Act. Living. 2021;3:335. doi: 10.3389/fspor.2021.782590.

Source: PubMed

3
Suscribir