Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC)

Kelly Santana, Eduardo França, João Sato, Ana Silva, Maria Queiroz, Julia de Farias, Danniely Rodrigues, Iara Souza, Vanessa Ribeiro, Egas Caparelli-Dáquer, Antonio L Teixeira, Leigh Charvet, Abhishek Datta, Marom Bikson, Suellen Andrade, Kelly Santana, Eduardo França, João Sato, Ana Silva, Maria Queiroz, Julia de Farias, Danniely Rodrigues, Iara Souza, Vanessa Ribeiro, Egas Caparelli-Dáquer, Antonio L Teixeira, Leigh Charvet, Abhishek Datta, Marom Bikson, Suellen Andrade

Abstract

Background: and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue.

Methods: Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL.

Results: Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09).

Conclusion: An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.

Keywords: Anxiety; Fatigue; High-Definition transcranial direct current stimulation; Non-invasive brain stimulation; Post-acute sequelae of Sars-COV-2; Respiratory rehabilitation.

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The City University of New York holds patents on brain stimulation with MB as inventor.MB has equity in Soterix Medical Inc. MB consults, received grants, assigned inventions, and/or serves on the SAB of SafeToddles, Boston Scientific, GlaxoSmithKline, Biophysics, Mecta, Lumenis, Halo Neuroscience, Google-X, i-Lumen, Humm, Allergan (Abbvie), Apple. AD is an employee and has equity in Soterix Medical Inc.

Copyright © 2023. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Experimental design of HD-tDCS plus rehabilitation program for fatigue in Post-Acute Sequelae of SARS-CoV-2 (PASC). The treatment protocol was composed by 10 sessions of HD-tDCS associated to rehabilitation program. The primary and secondary outcomes were measured at the baseline (T0) and at the endpoint (T1). HD-tDCS = High-Definition transcranial Direct Current Stimulation.
Fig. 2
Fig. 2
Screening, Randomization, and Follow-up of Patients in the HD-RECOVERY trial. HD-tDCS = High-Definition transcranial Direct Current Stimulation.
Fig. 3
Fig. 3
Primary fatigue Outcomes of HD-tDCS plus rehabilitation program in Post-Acute Sequelae of SARS-CoV-2 (PASC). Boxplots presenting changes in fatigue severity, (A) and regarding to cognitive, (B) psychosocial, (C) and physical fatigue domains, (D) from baseline to endpoint (week 5). A MFIS score reduction represents decrease fatigue severity after treatment. The HD-tDCS plus rehabilitation program on fatigue ratings were greater for the active group than for the sham group (fatigue total, cognitive and psychosocial domains). No significant effect was observed for physical fatigue between the two groups. MFIS = Modified Fatigue Impact Scale; HD-tDCS = High-Definition transcranial Direct Current Stimulation.
Fig. 4
Fig. 4
Secondary Outcomes. Panels showing changes in anxiety severity, A, quality of life, B and pain level, C from baseline to endpoint (week 5). Compared with sham group, the effect of attenuating anxiety symptoms and improve quality of life ratings were marginally greater for the active group. There was no statistically significant difference between the treatment groups in pain change. HAM-A = Hamilton anxiety rating scale; WHOQol-brief = World Health Organization quality of life questionnaire (brief version); MPQ = McGill Pain Questionnaire HD-tDCS = High-definition transcranial direct current stimulation.

References

    1. Parker A.M., Brigham E., Connolly B., McPeake J., Agranovich A.V., Kenes M.T., et al. Addressing the post-acute sequelae of SARS-CoV-2 infection: a multidisciplinary model of care. Lancet Respir Med. 2021;9:1328–1341. doi: 10.1016/S2213-2600(21)00385-4.
    1. Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R., et al. Sequelae in adults at 6 Months after COVID-19 infection. JAMA Netw Open. 2021;4 doi: 10.1001/jamanetworkopen.2021.0830.
    1. Maltezou H.C., Pavli A., Tsakris A. Post-COVID syndrome: an insight on its pathogenesis. Vaccines. 2021;9:497. doi: 10.3390/vaccines9050497.
    1. Brown K., Yahyouche A., Haroon S., Camaradou J., Turner G. Long COVID and self-management. Lancet. 2022;399:355. doi: 10.1016/S0140-6736(21)02798-7.
    1. Woods A.J., Antal A., Bikson M., Boggio P.S., Brunoni A.R., Celnik P., et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–1048. doi: 10.1016/j.clinph.2015.11.012.
    1. Villamar M.F., Volz M.S., Bikson M., Datta A., DaSilva A.F., Fregni F. Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS) JoVE. 2013 doi: 10.3791/50309.
    1. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2 doi: 10.1016/j.brs.2009.03.005. 201–7, 207.e1.
    1. Dmochowski J.P., Datta A., Bikson M., Su Y., Parra L.C. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8 doi: 10.1088/1741-2560/8/4/046011.
    1. Andrade S.M., Cecília de Araújo Silvestre M., Tenório de França E.É., Bezerra Sales Queiroz M.H., de Jesus Santana K., Lima Holmes Madruga M.L., et al. Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19 the HD-RECOVERY randomized clinical trial. Brain Stimul. 2022;15:780–788. doi: 10.1016/j.brs.2022.05.006.
    1. Czura C.J., Bikson M., Charvet L., Chen J.D.Z., Franke M., Fudim M., et al. Neuromodulation strategies to reduce inflammation and improve lung complications in COVID-19 patients. Front Neurol. 2022;13 doi: 10.3389/fneur.2022.897124.
    1. Lefaucheur J.-P., Chalah M.A., Mhalla A., Palm U., Ayache S.S., Mylius V. The treatment of fatigue by non-invasive brain stimulation. Neurophysiologie Clin/Clin Neurophys. 2017;47:173–184. doi: 10.1016/j.neucli.2017.03.003.
    1. Mortezanejad M., Ehsani F., Masoudian N., Zoghi M., Jaberzadeh S. Comparing the effects of multi-session anodal trans-cranial direct current stimulation of primary motor and dorsolateral prefrontal cortices on fatigue and quality of life in patients with multiple sclerosis: a double-blind, randomized, sham-controlled trial. Clin Rehabil. 2020;34:1103–1111. doi: 10.1177/0269215520921506.
    1. Azabou E., Bao G., Bounab R., Heming N., Annane D. Vagus nerve stimulation: a potential adjunct therapy for COVID-19. Front Med. 2021;8 doi: 10.3389/fmed.2021.625836.
    1. Tecchio F., Cancelli A., Cottone C., Zito G., Pasqualetti P., Ghazaryan A., et al. Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J Neurol. 2014;261:1552–1558. doi: 10.1007/s00415-014-7377-9.
    1. Workman C., Boles-Ponto L., Kamholz J., Bryant A., Rudroff T. Transcranial direct current stimulation and post-COVID-19-fatigue. Brain Stimul. 2021;14:1672–1673. doi: 10.1016/j.brs.2021.10.268.
    1. Baptista A.F., Baltar A., Okano A.H., Moreira A., Campos A.C.P., Fernandes A.M., et al. Applications of non-invasive neuromodulation for the management of disorders related to COVID-19. Front Neurol. 2020;11 doi: 10.3389/fneur.2020.573718.
    1. Pilloni G., Bikson M., Badran B.W., George M.S., Kautz S.A., Okano A.H., et al. Update on the use of transcranial electrical brain stimulation to manage acute and chronic COVID-19 symptoms. Front Hum Neurosci. 2020;14 doi: 10.3389/fnhum.2020.595567.
    1. Ortelli P., Ferrazzoli D., Sebastianelli L., Engl M., Romanello R., Nardone R., et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: insights into a challenging symptom. J Neurol Sci. 2021;420 doi: 10.1016/j.jns.2020.117271.
    1. Ortelli P., Ferrazzoli D., Sebastianelli L., Maestri R., Dezi S., Spampinato D., et al. Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID-19. Eur J Neurol. 2022;29:1652–1662. doi: 10.1111/ene.15278.
    1. Jiang Y., Guo Z., McClure M.A., He L., Mu Q. Effect of rTMS on Parkinson's cognitive function: a systematic review and meta-analysis. BMC Neurol. 2020;20:377. doi: 10.1186/s12883-020-01953-4.
    1. Di Lazzaro V., Oliviero A., Tonali P.A., Mazzone P., Insola A., Pilato F., et al. Direct demonstration of reduction of the output of the human motor cortex induced by a fatiguing muscle contraction. Exp Brain Res. 2003;149:535–538. doi: 10.1007/s00221-003-1408-6.
    1. Ferrucci R., Vergari M., Cogiamanian F., Bocci T., Ciocca M., Tomasini E., et al. Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NRE. 2014;34:121–127. doi: 10.3233/NRE-131019.
    1. De Doncker W., Ondobaka S., Kuppuswamy A. Effect of transcranial direct current stimulation on post-stroke fatigue. J Neurol. 2021;268:2831–2842. doi: 10.1007/s00415-021-10442-8.
    1. Herrera J.E., Niehaus W.N., Whiteson J., Azola A., Baratta J.M., Fleming T.K., et al. Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV -2 infection (PASC) patients. PM&R. 2021;13:1027–1043. doi: 10.1002/pmrj.12684.
    1. Mikkelsen M., Abramoff B. Long COVID”); 2022. COVID-19: evaluation and management of adults with persistent symptoms following acute illness.
    1. Shahid A., Wilkinson K., Marcu S., Shapiro C.M. In: STOP, THAT and one hundred other sleep scales. Shahid A., Wilkinson K., Marcu S., Shapiro C.M., editors. Springer New York; New York, NY: 2011. Beck depression inventory; pp. 63–64.
    1. Kuo M.-F., Chen P.-S., Nitsche M.A. The application of tDCS for the treatment of psychiatric diseases. Int Rev Psychiatr. 2017;29:146–167. doi: 10.1080/09540261.2017.1286299.
    1. Kuo H.-I., Bikson M., Datta A., Minhas P., Paulus W., Kuo M.-F., et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6:644–648. doi: 10.1016/j.brs.2012.09.010.
    1. Reckow J., Rahman-Filipiak A., Garcia S., Schlaefflin S., Calhoun O., DaSilva A.F., et al. Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimul. 2018;11:991–997. doi: 10.1016/j.brs.2018.04.022.
    1. Borg G.A. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
    1. Therapeutic patient education : continuing education programmes for health care providers in the field of prevention of chronic diseases : report of a WHO working group n.d.
    1. Fisk J.D., Ritvo P.G., Ross L., Haase D.A., Marrie T.J., Schlech W.F. Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis. 1994;18:S79–S83. doi: 10.1093/clinids/18.Supplement_1.S79.
    1. Maier W., Buller R., Philipp M., Heuser I. The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders. J Affect Disord. 1988;14:61–68. doi: 10.1016/0165-0327(88)90072-9.
    1. The Whoqol Group Development of the world health organization WHOQOL-BREF quality of life assessment. Psychol Med. 1998;28:551–558. doi: 10.1017/S0033291798006667.
    1. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975;1:277–299. doi: 10.1016/0304-3959(75)90044-5.
    1. Cozart J.S., Strober L., Ruppen S., Bradish T., Belcher C., Louthan T., et al. A quick assessment of reliable change in fatigue: reliable change indices of the modified fatigue impact scale – 5 item (MFIS-5) Multiple Sclerosis Related Disord. 2021;49 doi: 10.1016/j.msard.2021.102743.
    1. Brunoni A.R., Amadera J., Berbel B., Volz M.S., Rizzerio B.G., Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14:1133–1145. doi: 10.1017/S1461145710001690.
    1. Beck A.T. An inventory for measuring depression. Arch Gen Psychiatr. 1961;4:561. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Mulder-Hajonides van der Meulen W., Wijnberg J., Hollander J., et al. Measurement of subjective sleep quality. Eur. Sleep Res. Soc. 1980;5:98.
    1. Richardson J., Datta A., Dmochowski J., Parra L.C., Fridriksson J. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia. NeuroRehabilitation. 2015;36:115–126. doi: 10.3233/NRE-141199.
    1. Jacquemin L., Shekhawat G.S., Van de Heyning P., Mertens G., Fransen E., Van Rompaey V., et al. Effects of electrical stimulation in tinnitus patients: conventional versus high-definition tDCS. Neurorehabilitation Neural Repair. 2018;32:714–723. doi: 10.1177/1545968318787916.
    1. Keeser D., Meindl T., Bor J., Palm U., Pogarell O., Mulert C., et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31:15284–15293. doi: 10.1523/JNEUROSCI.0542-11.2011.
    1. Nitsche M.A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301. doi: 10.1113/jphysiol.2003.049916.
    1. Hordacre B., Moezzi B., Ridding M.C. Neuroplasticity and network connectivity of the motor cortex following stroke: a transcranial direct current stimulation study. Hum Brain Mapp. 2018;39:3326–3339. doi: 10.1002/hbm.24079.
    1. Park C., Chang W.H., Park J.-Y., Shin Y.-I., Kim S.T., Kim Y.-H. Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett. 2013;539:7. doi: 10.1016/j.neulet.2013.01.047. 10.
    1. Andrade S.M., Ferreira JJ. de A., Rufino T.S., Medeiros G., Brito J.D., da Silva M.A., et al. Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol Res. 2017;39:1037–1043. doi: 10.1080/01616412.2017.1371473.
    1. Pilloni G., Choi C., Shaw M., et al. Transcranial direct current stimulation (tDCS) can reduce fatigue and improve sleep quality in multiple sclerosis. Neurology Apr. 2020;94(15):3961. 3961.
    1. Tavazzi L., Gattone M., Corra U., De Vito F. The anaerobic index: uses and limitations in the assessment of heart failure. Cardiology. 1989;76:357–367.
    1. Prosperini L., Piattella M.C., Giannì C., Pantano P. Functional and structural brain plasticity enhanced by motor and cognitive rehabilitation in multiple sclerosis. Neural Plast. 2015:1–12. doi: 10.1155/2015/481574. 2015.
    1. Foong R., Ang K.K., Quek C., Guan C., Phua K.S., Kuah C.W.K., et al. Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans Biomed Eng. 2020;67:786–795. doi: 10.1109/TBME.2019.2921198.
    1. Hong X., Lu Z.K., Teh I., Nasrallah F.A., Teo W.P., Ang K.K., et al. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci Rep. 2017;7:9222. doi: 10.1038/s41598-017-08928-5.
    1. Andrade S.M., Machado DG. da S., Silva-Sauerc L da, Regis C.T., Mendes C.K.T.T., de Araújo J.S.S., et al. Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer's disease and its neurophysiological correlates: a double-blind randomized clinical trial. Neurophysiol Clin. 2022;52:117–127. doi: 10.1016/j.neucli.2022.02.003.
    1. Fregni F., El-Hagrassy M.M., Pacheco-Barrios K., Carvalho S., Leite J., Simis M., et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J Neuropsychopharmacol. 2021;24:256–313. doi: 10.1093/ijnp/pyaa051.
    1. Brunoni A.R., Moffa A.H., Sampaio-Junior B., Borrione L., Moreno M.L., Fernandes R.A., et al. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med. 2017;376:2523–2533. doi: 10.1056/NEJMoa1612999.
    1. Antal A., Alekseichuk I., Bikson M., Brockmöller J., Brunoni A.R., Chen R., et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128:1774–1809. doi: 10.1016/j.clinph.2017.06.001.
    1. Fregni F., Nitsche M.A., Loo C.K., Brunoni A.R., Marangolo P., Leite J., et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32:22–35. doi: 10.3109/10601333.2015.980944.
    1. Brunoni A.R., Nitsche M.A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–195. doi: 10.1016/j.brs.2011.03.002.
    1. Tedla J.S., Sangadala D.R., Reddy R.S., Gular K., Dixit S. High-definition trans cranial direct current stimulation and its effects on cognitive function: a systematic review. Cerebr Cortex. 2022:bhac485. doi: 10.1093/cercor/bhac485.
    1. Masina F., Arcara G., Galletti E., Cinque I., Gamberini L., Mapelli D. Neurophysiological and behavioural effects of conventional and high definition tDCS. Sci Rep. 2021;11:7659. doi: 10.1038/s41598-021-87371-z.
    1. Parlikar R., Vanteemar S.S., Shivakumar V., Narayanaswamy C.J., Rao P.N., Ganesan V. High definition transcranial direct current stimulation (HD-tDCS): a systematic review on the treatment of neuropsychiatric disorders. Asian Journal of Psychiatry. 2021;56 doi: 10.1016/j.ajp.2020.102542.
    1. Castillo-Saavedra L., Gebodh N., Bikson M., Diaz-Cruz C., Brandao R., Coutinho L., et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization. J Pain. 2016;17:14–26. doi: 10.1016/j.jpain.2015.09.009.
    1. Flood A., Waddington G., Keegan R.J., Thompson K.G., Cathcart S. The effects of elevated pain inhibition on endurance exercise performance. PeerJ. 2017;5 doi: 10.7717/peerj.3028.
    1. Cole L., Giuffre A., Ciechanski P., Carlson H.L., Zewdie E., Kuo H.-C., et al. Effects of high-definition and conventional transcranial direct-current stimulation on motor learning in children. Front Neurosci. 2018;12:787. doi: 10.3389/fnins.2018.00787.
    1. da Silva Machado D.G., Bikson M., Datta A., Caparelli-Dáquer E., Unal G., Baptista A.F., et al. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep. 2021;11 doi: 10.1038/s41598-021-92670-6.
    1. Goërtz Y.M.J., Braamse A.M.J., Spruit M.A., Janssen D.J.A., Ebadi Z., Van Herck M., et al. Fatigue in patients with chronic disease: results from the population-based Lifelines Cohort Study. Sci Rep. 2021;11 doi: 10.1038/s41598-021-00337-z.
    1. AlSaeed S., Aljouee T., Alkhawajah N.M., Alarieh R., AlGarni H., Aljarallah S., et al. Fatigue, depression, and anxiety among ambulating multiple sclerosis patients. Front Immunol. 2022;13 doi: 10.3389/fimmu.2022.844461.
    1. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank n.d.:vol. 55.
    1. Silva L.S., Joao R.B., Nogueira M.H., Aventurato I.K., de Campos B.M., de Brito M.R., et al. Functional and microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Neurology. 2021 doi: 10.1101/2021.03.20.21253414.
    1. Malik P., Patel K., Pinto C., Jaiswal R., Tirupathi R., Pillai S., et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—a systematic review and meta-analysis. J Med Virol. 2022;94:253–262. doi: 10.1002/jmv.27309.
    1. Turpin K.V.L., Carroll L.J., Cassidy J.D., Hader W.J. Deterioration in the health-related quality of life of persons with multiple sclerosis: the possible warning signs. Mult Scler. 2007;13:1038–1045. doi: 10.1177/1352458507078393.
    1. Manenti R., Cotelli M.S., Cobelli C., Gobbi E., Brambilla M., Rusich D., et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: a randomized, placebo-controlled study. Brain Stimul. 2018;11:1251–1262. doi: 10.1016/j.brs.2018.07.046.
    1. Schabrun S.M., Lamont R.M., Brauer S.G. Transcranial direct current stimulation to enhance dual-task gait training in Parkinson's disease: a pilot RCT. PLoS One. 2016;11 doi: 10.1371/journal.pone.0158497.
    1. Datta A., Truong D., Minhas P., Parra L.C., Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatr. 2012;3:91. doi: 10.3389/fpsyt.2012.00091.
    1. Edwards D., Cortes M., Datta A., Minhas P., Wassermann E.M., Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage. 2013;74:266–275. doi: 10.1016/j.neuroimage.2013.01.042.
    1. Palm U., Kumpf U., Behler N., Wulf L., Kirsch B., Wörsching J., et al. Home use, remotely supervised, and remotely controlled transcranial direct current stimulation: a systematic review of the available evidence. Neuromodulation: Technol at the Neural Interface. 2018;21:323–333. doi: 10.1111/ner.12686.
    1. Pilloni G., Vogel-Eyny A., Lustberg M., Best P., Malik M., Walton-Masters L., et al. Tolerability and feasibility of at-home remotely supervised transcranial direct current stimulation (RS-tDCS): single-center evidence from 6,779 sessions. Brain Stimul. 2022;15:707–716. doi: 10.1016/j.brs.2022.04.014.
    1. Tecchio F., Cancelli A., Pizzichino A., L'Abbate T., Gianni E., Bertoli M., et al. Home treatment against fatigue in multiple sclerosis by a personalized, bilateral whole-body somatosensory cortex stimulation. Mult Scler Relat Disord. 2022;63 doi: 10.1016/j.msard.2022.103813.

Source: PubMed

3
Suscribir