Optimal administration of bronchodilators with valved holding chambers in preschool children: a review of literature

Péter Csonka, Terhi Tapiainen, Mika J Mäkelä, Lauri Lehtimäki, Péter Csonka, Terhi Tapiainen, Mika J Mäkelä, Lauri Lehtimäki

Abstract

Our aim was to synthesize the published literature on factors that potentially affect the delivery of bronchodilators using valved holding chambers (VHC) in preschool children. We also aimed to identify those attributes that are not yet incorporated or clearly stated in the guidelines and those topics that are still lacking sufficient data. There is strong evidence supporting several recommendations in current guidelines. Based on present knowledge, bronchodilators should be delivered by VHC administering each puff separately. Face mask should be omitted as soon as the child can hold the mouthpiece of the VHC tightly between the lips and teeth. Based on the review, we suggest adding a specific note to current guidelines about the effect of chamber volume and the impact of co-operation during drug administration. Calming the child and securing a tight face-to-mask seal is critical for successful drug delivery. There is not enough evidence to make specific recommendations on the most reliable VHC and face mask for children. There is an urgent need for studies that evaluate and compare the effectiveness of VHCs in various clinical settings in wide age-groups and respiratory patterns. In addition, there is insufficient data on ideal chamber volume, material, and effective antistatic treatment. What is Known: • Valved holding chambers (VHC) should not be considered interchangeable when used with pressurized metered dose inhalers (pMDI). • Drug delivery is influenced by VHC volume, aerodynamic and electrostatic properties; mask fit; respiratory pattern and co-operation during inhalation; and the number of puffs actuated. What is New: • The impact of co-operation, VHC volume, and good mask-to-face fit during drug inhalation is not stressed enough in the guidelines. • Studies are urgently needed to evaluate the effectiveness of different VHCs in various clinical settings focusing on VHC electrostatic properties, respiratory patters, face masks, and ideal pMDI+VHC combinations.

Keywords: Acute; Asthma; Bronchodilators; Drug delivery; Emergency treatment; Guidelines; Inhalation therapy; Management; Preschool children; Spacer; Valved holding chambers; Wheezing.

Conflict of interest statement

None of the authors have any conflict of interest regarding this paper.

© 2021. The Author(s).

References

    1. Csonka P, Mertsola J, Klaukka T, Kaila M, Ståhlberg MR, Ashorn P. Corticosteroid therapy and need for hospital care in wheezing preschool children. Eur J Clin Pharmacol. 2000;56:591–596. doi: 10.1007/s002280000199.
    1. Mecklin M, Paassilta M, Kainulainen H, Korppi M. Emergency treatment of obstructive bronchitis: change from nebulizers to metered dose inhalers with spacers. Acta Paediatr. 2011;100:1226–1229. doi: 10.1111/j.1651-2227.2011.02267.x.
    1. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev. 2013;13:CD000052. doi: 10.1002/14651858.CD000052.pub3.
    1. Castro-Rodriguez JA, Rodrigo GJ. β-agonists through metered-dose inhaler with valved holding chamber versus nebulizer for acute exacerbation of wheezing or asthma in children under 5 years of age: A systematic review with meta-analysis. J Pediatr. 2004;145:172–177. doi: 10.1016/j.jpeds.2004.04.007.
    1. Delgado A, Chou KJ, Johnson Silver E, et al. Nebulizers vs metered-dose inhalers with spacers for bronchodilator therapy to treat wheezing in children aged 2 to 24 months in a pediatric emergency department. Arch Pediatr Adolesc Med. 2003;157:76–80. doi: 10.1001/archpedi.157.1.76.
    1. Deerojanawong J, Manuyakorn W, Prapphal N, Harnruthakorn C, Sritippayawan S, Samransamruajkit R. Randomized controlled trial of salbutamol aerosol therapy via metered dose inhaler-spacer vs. jet nebulizer in young children with wheezing. Pediatr Pulmonol. 2005;39:466–472. doi: 10.1002/ppul.20204.
    1. Parkin PC, Saunders NR, Diamond SA, Winders PM, Macarthur C. Randomised trial spacer v nebuliser for acute asthma. Arch Dis Child. 1995;72:239–240. doi: 10.1136/adc.72.3.239.
    1. (2012) Asthma - Finnish Current Care Guidelines. In: Helsinki Finnish Med. Soc. Duodecim. . Accessed 20 Sep 2020
    1. (2020) Global Strategy for Asthma Management and Prevention (2020 update). . Accessed 6 Sep 2020
    1. National Asthma Council Australia Australian Asthma Handbook, Version 2.1. In: 2020. . Accessed 20 Oct 2020
    1. (2019) British guideline on the management of asthma - SIGN 158. . Accessed 20 Oct 2020
    1. (2012) Managing the paediatric patient with an acute asthma exacerbation - Canadian Paediatric Society (Reaffirmed: Jan 30, 2017). . Accessed 15 Oct 2020
    1. (2007) Guidelines for the Diagnosis and Management of Asthma - Full Report. . Accessed 20 Oct 2020
    1. Working group set up by the Finnish Medical Society Duodecim, The Finnish Paediatric Society and TFS of GP (2015) Treatment of lower respiratory tract infections in children - Finnish Current Care Guidelines. . Accessed 18 Sep 2019
    1. Fink JB, Ehrmann S, Li J, et al. Reducing Aerosol-Related Risk of Transmission in the Era of COVID-19: An Interim Guidance Endorsed by the International Society of Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv. 2020;33:jamp.2020.1615. doi: 10.1089/jamp.2020.1615.
    1. (2020) Global Initiative for Asthma. COVID-19: GINA answers to frequently asked questions on asthma management. . Accessed 10 Dec 2020
    1. Csonka P, Lehtimäki L. In vitro drug delivery performance of five valved holding chambers with and without facemasks. Pediatr Pulmonol. 2019;54:1457–1465. doi: 10.1002/ppul.24425.
    1. Barry PW, O’Callaghan C. In vitro comparison of the amount of salbutamol available for inhalation from different formulations used with different spacer devices. Eur Respir J. 1997;10:1345–1348. doi: 10.1183/09031936.97.10061345.
    1. Janssens HM, Heijnen EMEW, De Jong VM, et al. Aerosol delivery from spacers in wheezy infants: A daily life study. Eur Respir J. 2000;16:850–856. doi: 10.1088/0953-8984/1/25/010.
    1. Häselbarth J, Svedmyr J. Paediatric in vitro models showed significant variations in fluticasone proprionate output from valved holding chambers. Acta Paediatr. 2020;109:565–572. doi: 10.1111/apa.14965.
    1. Finlay WH, Zuberbuhler P. In vitro comparison of beclomethasone and salbutamol metered-dose inhaler aerosols inhaled during pediatric tidal breathing from four valved holding chambers. Chest. 1998;114:1676–1680. doi: 10.1378/chest.114.6.1676.
    1. Csonka P, Lehtimäki L (2019) Valved holding chamber drug delivery is dependent on breathing pattern and device design. ERJ Open Res 4:5(1). 10.1183/23120541.00158-2018
    1. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, Gibson P, Ohta K, O'Byrne P, Pedersen SE, Pizzichini E, Sullivan SD, Wenzel SE, Zar HJ. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31:143–178. doi: 10.1183/09031936.00138707.
    1. Mitchell JP, Nagel MWMM. In vitro performance testing of three small volume-holding chambers under conditions that correspond with use by infants and small children. J Aerosol Med. 1997;10:341–349. doi: 10.1089/jam.1997.10.341.
    1. Berg E, Madsen J, Bisgaard H. In vitro performance of three combinations of spacers and pressurized metered dose inhalers for treatment in children. Eur Respir J. 1998;12:472–476. doi: 10.1183/09031936.98.12020472.
    1. Dubus J, Anhøj J. Inhaled steroid delivery from small-volume holding. J Aerosol Med. 2004;17:225–230. doi: 10.1089/jam.2004.17.225.
    1. Turpeinen M, Nikander K, Malmberg LP, et al. Metered dose inhaler add-on devices: is the inhaled mass of drug dependent on the size of the infant? J Aerosol Med. 1999;12:171–176. doi: 10.1089/jam.1999.12.171.
    1. Csonka P, Lehtimaki L (2018) Valved holding chambers vary considerably in drug delivery efficacy:OA340. 10.1183/13993003.congress-2018.oa340
    1. Schultz A, Le Souëf TJ, Looi K, et al. Validation of methodology for recording breathing and simulating drug delivery through spacers and valved holding chambers. J Aerosol Med Pulm Drug Deliv. 2010;23:311–322. doi: 10.1089/jamp.2008.0733.
    1. Vincken W, Levy ML, Scullion J, Usmani OS, Dekhuijzen PNR, Corrigan CJ. Spacer devices for inhaled therapy: why use them, and how? ERJ Open Res. 2018;4:1–10. doi: 10.1183/23120541.00065-2018.
    1. Piérart F, Wildhaber JHH, Vrancken I, et al. Washing plastic spacers in household detergent reduces electrostatic charge and greatly improves delivery. Eur Respir J. 1999;13:673–678. doi: 10.1183/09031936.99.13367399.
    1. Janssens HM, Krijgsman A, Verbraak TFM, Hop WCJ, de Jongste JC, Tiddens HAWM. Determining factors of aerosol deposition for four pMDI-spacer combinations in an infant upper airway model. J Aerosol Med. 2004;17:51–61. doi: 10.1089/089426804322994460.
    1. Everard ML, Clark AR, Milner AD. Drug delivery from holding chambers with attached facemask. Arch Dis Child. 1992;67:580–585. doi: 10.1136/adc.67.5.580.
    1. Nikander K, Denyer J. Breathing patterns. Eur Respir Rev. 2000;10:576–579.
    1. Barry PW, O’Callaghan C. The output of budesonide from spacer devices assessed under simulated breathing conditions. J Allergy Clin Immunol. 1999;104:1205–1210. doi: 10.1016/S0091-6749(99)70014-X.
    1. Chavez A, McCracken A, Berlinski A. Effect of face mask dead volume, respiratory rate, and tidal volume on inhaled albuterol delivery. Pediatr Pulmonol. 2010;45:224–229. doi: 10.1002/ppul.21156.
    1. Amirav I, Newhouse M. Aerosol therapy with valved holding chambers in young children: importance of the facemask seal. Pediatrics. 2001;108:389–394. doi: 10.1542/peds.108.2.389.
    1. Janssens HM, Tiddens HAWM. Facemasks and Aerosol Delivery by Metered Dose Inhaler–Valved Holding Chamber in Young Children: A Tight Seal Makes the Difference. J Aerosol Med. 2007;20:S59–S65. doi: 10.1089/jam.2007.0578.
    1. Hayden JT, Smith N, Woolf DA, Barry PW, O'Callaghan C. A randomised crossover trial of facemask efficacy. Arch Dis Child. 2004;89:72–73.
    1. Smaldone GC, Berg E, Nikander K. Variation in pediatric aerosol delivery: importance of facemask. J Aerosol Med. 2005;18:354–363. doi: 10.1089/jam.2005.18.354.
    1. Esposito-Festen JEE, Ates B, van Vliet FJMJM, et al. Effect of a facemask leak on aerosol delivery from a pMDI-spacer system. J Aerosol Med. 2004;17:1–6. doi: 10.1089/089426804322994406.
    1. Shah SA, Berlinski A, Rubin BK. Force-dependent static dead space of face masks used with holding chambers. Respir Care. 2006;51:140–144.
    1. Amirav I, Luder AS, Halamish A, Marzuk C, Daitzchman M, Newhouse MT. Computerized dead-space volume measurement of face masks applied to simulated faces. Respir Care. 2015;60:1247–1251. doi: 10.4187/respcare.03813.
    1. Nikander K, Berg E, Smaldone GC. Jet nebulizers versus pressurized metered dose inhalers with valved holding chambers: effects of the facemask on aerosol delivery. J Aerosol Med. 2007;20:S46–S58. doi: 10.1089/jam.2007.0588.
    1. Erzinger S, Schueepp KG, Brooks-Wildhaber J, Devadason SG, Wildhaber JH. Facemasks and aerosol delivery in vivo. J Aerosol Med. 2007;20:S78–S84. doi: 10.1089/jam.2007.0572.
    1. Iles R, Lister P, Edmunds AT. Crying significantly reduces absorption of aerosolised drug in infants. Arch Dis Child. 1999;81:163–165. doi: 10.1136/adc.81.2.163.
    1. Murakami G, Igarashi T, Adachi Y, Matsuno M, Adachi Y, Sawai M, Yoshizumi A, Okada T. Measurement of bronchial hyperreactivity in infants and preschool children using a new method. Ann Allergy. 1990;64:383–387.
    1. Schultz A, Le Souef TJ, Venter A, et al. Aerosol inhalation from spacers and valved holding chambers requires few tidal breaths for children. Pediatrics. 2010;126:e1493–e1498. doi: 10.1542/peds.2010-1377.
    1. Clark DJ, Lipworth BJ. Effect of multiple actuations, delayed inhalation and antistatic treatment on the lung bioavailability of salbutamol via a spacer device. Thorax. 1996;51:981–984. doi: 10.1136/thx.51.10.981.
    1. Barry PW, O’Callaghan C. Multiple actuations of salbutamol MDI into a spacer device reduce the amount of drug recovered in the respirable range. Eur Respir J. 1994;7:1707–1709. doi: 10.1183/09031936.94.07091707.
    1. Wildhaber JH, Devadason SG, Eber E, Hayden MJ, Everard ML, Summers QA, LeSouef PN. Effect of electrostatic charge, flow, delay and multiple actuations on the in vitro delivery of salbutamol from different small volume spacers for infants. Thorax. 1996;51:985–988. doi: 10.1136/thx.51.10.985.
    1. Csonka P, Lehtimäki L. Antistatic treatment and salbutamol dosing have variable effect on drug delivery of valved holding chambers. Pulm Pharmacol Ther. 2019;59:101857. doi: 10.1016/j.pupt.2019.101857.
    1. Barry PW, O’Callaghan C, Callaghan CO, et al. The effect of delay, multiple actuations and spacer static charge on the in vitro delivery of budesonide from the Nebuhaler. Br J Clin Pharmacol. 1995;40:76–78. doi: 10.1111/j.1365-2125.1995.tb04538.x.
    1. Wildhaber JH, Devadason SG, Hayden MJ, James R, Dufty AP, Fox RA, Summers QA, LeSouëf PN. Electrostatic charge on a plastic spacer device influences the delivery of salbutamol. Eur Respir J. 1996;9:1943–1946. doi: 10.1183/09031936.96.09091943.
    1. Anhøj J, Bisgaard H, Lipworth BJ. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children. Br J Clin Pharmacol. 1999;47:333–336. doi: 10.1046/j.1365-2125.1999.00893.x.
    1. Dompeling E, Oudesluys Murphy AM, Janssens HM, et al. Randomised controlled study of clinical efficacy of spacer therapy in asthma with regard to electrostatic charge. Arch Dis Child. 2001;84:178–182. doi: 10.1136/adc.84.2.178.
    1. Janssens HM, Devadason SG, Hop WCJ, et al. Variability of aerosol delivery via spacer devices in young asthmatic children in daily life. Eur Respir J. 1999;13:787–791. doi: 10.1034/j.1399-3003.1999.13d15.x.
    1. Dubus JC, Guillot C, Badier M. Electrostatic charge on spacer devices and salbutamol response in young children. Int J Pharm. 2003;261:159–164. doi: 10.1016/S0378-5173(03)00314-4.
    1. Hagedoorn P, Bawary W, Frijlink HW, Grasmeijer F. A comparative analysis of changes in pMDI drug dose delivery before and after detergent coating using five antistatic valved holding chambers. J Allergy Clin Immunol Pract. 2020;8:1124–1125.e4. doi: 10.1016/j.jaip.2019.09.021.
    1. Hatley RHM, von Hollen D, Sandell D, Slator L. In Vitro Characterization of the OptiChamber Diamond Valved Holding Chamber. J Aerosol Med Pulm Drug Deliv. 2014;27:S-24–S-36. doi: 10.1089/jamp.2013.1067.

Source: PubMed

3
Suscribir