Advances in pleural infection and malignancy

Eihab O Bedawi, Julien Guinde, Najiib M Rahman, Philippe Astoul, Eihab O Bedawi, Julien Guinde, Najiib M Rahman, Philippe Astoul

Abstract

Pleural infection and malignancy are among the most common causes of pleural disease and form the mainstay of pleural practice. There has been significant research and increase in scientific understanding in these areas in the past decade. With regard to pleural infection, the rising incidence remains worrying. An increased awareness allowing earlier diagnosis, earlier escalation of therapy and the use of validated risk stratification measures may improve outcomes. In pleural malignancy, research has enabled clinicians to streamline patient pathways with focus on reducing time to diagnosis, definitive management of malignant pleural effusion and achieving these with the minimum number of pleural interventions. Trials comparing treatment modalities of malignant pleural effusion continue to highlight the importance of patient choice in clinical decision-making. This article aims to summarise some of the most recent literature informing current practice in these two areas.

Conflict of interest statement

Conflict of interest: E.O. Bedawi has nothing to disclose. Conflict of interest: J. Guinde has nothing to disclose. Conflict of interest: N.M. Rahman reports grants from Roche and Genentech, and grants and personal fees from LTI USA, outside the submitted work. Conflict of interest: P. Astoul has nothing to disclose.

Copyright ©ERS 2021.

Figures

FIGURE 1
FIGURE 1
Real-time ultrasound-guided cutting-needle biopsy.
FIGURE 2
FIGURE 2
A practical algorithm for the management of malignant pleural effusion. IPC: indwelling pleural catheter; LENT: pleural lactate dehydrogenase rate, neutrophil-to-lymphocyte ratio, tumour type and Eastern Cooperative Oncology Group performance status.

References

    1. Dean NC, Griffith PP, Sorensen JS, et al. . Pleural effusions at first ED encounter predict worse clinical outcomes in patients with pneumonia. Chest 2016; 149: 1509–1515. doi:10.1016/j.chest.2015.12.027
    1. Grijalva CG, Zhu Y, Nuorti JP, et al. . Emergence of parapneumonic empyema in the USA. Thorax 2011; 66: 663–668. doi:10.1136/thx.2010.156406
    1. Farjah F, Symons RG, Krishnadasan B, et al. . Management of pleural space infections: a population-based analysis. J Thorac Cardiovasc Surg 2007; 133: 346–351. doi:10.1016/j.jtcvs.2006.09.038
    1. Burgos J, Lujan M, Falcó V, et al. . The spectrum of pneumococcal empyema in adults in the early 21st century. Clin Infect Dis 2011; 53: 254–261. doi:10.1093/cid/cir354
    1. Byington CL, Hulten KG, Ampofo K, et al. . Molecular epidemiology of pediatric pneumococcal empyema from 2001 to 2007 in Utah. J Clin Microbiol 2010; 48: 520–525. doi:10.1128/JCM.01200-09
    1. Chacon-Cruz E, Lopatynsky-Reyes EZ, Rivas-Landeros RM, et al. . Trends in pediatric pneumococcal pleural empyema following pneumococcal conjugate 13-valent vaccination: 10 years of active surveillance in a Mexican hospital. Open Forum Infect Dis 2016; 3; 774. doi:10.1093/ofid/ofw172.637
    1. Thomas M, Sheppard C, Guiver M, et al. . S72 Paediatric pneumococcal empyema serotypes have not changed following introduction of the 13 valent pneumococcal vaccine. Thorax 2013; 68: A39. doi:10.1136/thoraxjnl-2012-202125
    1. Fitzgerald DB, Leong SL, Budgeon CA, et al. . Relationship of pleural fluid pH and glucose: a multi-centre study of 2,971 cases. J Thorac Dis 2019; 11: 123–130. doi:10.21037/jtd.2018.12.101
    1. Dixon G, Lama-Lopez A, Bintcliffe OJ, et al. . The role of serum procalcitonin in establishing the diagnosis and prognosis of pleural infection. Respir Res 2017; 18: 30. doi:10.1186/s12931-017-0501-5
    1. de Fonseka D, Maskell NA. The role of procalcitonin in the management of pleural infection. Curr Opin Pulm Med 2018; 24: 380–383. doi:10.1097/MCP.0000000000000481
    1. Okiror L, Coltart C, Bille A, et al. . Thoracotomy and decortication: impact of culture-positive empyema on the outcome of surgery. Eur J Cardiothorac Surg 2014; 46: 901–906. doi:10.1093/ejcts/ezu104
    1. Rovina N, Dima E, Psallidas I, et al. . Interleukin-18 is up-regulated in infectious pleural effusions. Cytokine 2013; 63: 166–171. doi:10.1016/j.cyto.2013.04.017
    1. Wu K-A, Wu C-C, Chen C-D, et al. . Proteome profiling reveals novel biomarkers to identify complicated parapneumonic effusions. Sci Rep 2017; 7: 4026. doi:10.1038/s41598-017-04189-4
    1. Porcel JM. Pleural fluid biomarkers: beyond the Light criteria. Clin Chest Med 2013; 34: 27–37. doi:10.1016/j.ccm.2012.11.002
    1. Porcel JM, Vives M, Cao G, et al. . Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J 2009; 34: 1383–1389. doi:10.1183/09031936.00197208
    1. Maskell NA, Batt S, Hedley EL, et al. . The bacteriology of pleural infection by genetic and standard methods and its mortality significance. Am J Respir Crit Care Med 2006; 174: 817–823. doi:10.1164/rccm.200601-074OC
    1. Hassan M, Cargill T, Harriss E, et al. . The microbiology of pleural infection in adults: a systematic review. Eur Respir J 2019; 54: 1900542. doi:10.1183/13993003.00542-2019
    1. Menzies SM, Rahman NM, Wrightson JM, et al. . Blood culture bottle culture of pleural fluid in pleural infection. Thorax 2011; 66: 658–662. doi:10.1136/thx.2010.157842
    1. Maskell NA, Davies CWH, Nunn AJ, et al. . UK controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 2005; 352: 865–874. doi:10.1056/NEJMoa042473
    1. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn 2001; 6: 313–321. doi:10.2165/00066982-200106040-00012
    1. Lu X-X, Wu W, Wang M, et al. . [16S rRNA gene sequencing for pathogen identification from clinical specimens]. Zhonghua Yi Xue Za Zhi 2008; 88: 123–126.
    1. Psallidas I, Kanellakis NI, Bhatnagar R, et al. . A pilot feasibility study in establishing the role of ultrasound-guided pleural biopsies in pleural infection (the AUDIO study). Chest 2018; 154: 776–772. doi:10.1016/j.chest.2018.02.031
    1. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 2007; 45: 2761–2764. doi:10.1128/JCM.01228-07
    1. Bedawi EO, Hassan M, McCracken D, et al. . Pleural infection: a closer look at the etiopathogenesis, microbiology and role of antibiotics. Expert Rev Respir Med 2019; 13: 337–347. doi:10.1080/17476348.2019.1578212
    1. Rahman NM, Maskell NA, Davies CWH, et al. . The relationship between chest tube size and clinical outcome in pleural infection. Chest 2010; 137: 536–543. doi:10.1378/chest.09-1044
    1. Davies HE, Davies RJO, Davies CWH. Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010. Thorax 2010; 65: Suppl. 2, ii41–ii53. doi:10.1136/thx.2010.137000
    1. Rahman NM, Maskell NA, West A, et al. . Intrapleural use of tissue plasminogen activator and dnase in pleural infection. N Engl J Med 2011; 365: 518–526. doi:10.1056/NEJMoa1012740
    1. Bédat B, Plojoux J, Noel J, et al. . Comparison of intrapleural use of urokinase and tissue plasminogen activator/DNAse in pleural infection. ERJ Open Res 2019; 5: 00084-2019. doi:10.1183/23120541.00084-2019
    1. Majid A, Ochoa S, Chatterji S, et al. . Safety and efficacy of tissue plasminogen activator and DNase for complicated pleural effusions secondary to abdominal pathology. Ann Am Thorac Soc 2017; 14: 342–346. doi:10.1513/AnnalsATS.201608-594BC
    1. Piccolo F, Popowicz N, Wong D, et al. . Intrapleural tissue plasminogen activator and deoxyribonuclease therapy for pleural infection. J Thorac Dis 2015; 7: 999–1008.
    1. Bishwakarma R, Shah S, Frank L, et al. . Mixing it up: coadministration of tPA/DNase in complicated parapneumonic pleural effusions and empyema. J Bronchology Interv Pulmonol 2017; 24: 40–47. doi:10.1097/LBR.0000000000000334
    1. Popowicz N, Bintcliffe O, De Fonseka D, et al. . Dose de-escalation of intrapleural tissue plasminogen activator therapy for pleural infection. The alteplase dose assessment for pleural infection therapy project. Ann Am Thorac Soc 2017; 14: 929–936. doi:10.1513/AnnalsATS.201609-673OC
    1. Mehta HJ, Biswas A, Penley AM, et al. . Management of intrapleural sepsis with once daily use of tissue plasminogen activator and deoxyribonuclease. Respiration 2016; 91: 101–106. doi:10.1159/000443334
    1. McClune JR, Wilshire CL, Gorden JA, et al. . Safety and efficacy of intrapleural tissue plasminogen activator and DNase during extended use in complicated pleural space infections. Can Respir J 2016; 2016: 9796768. doi:10.1155/2016/9796768
    1. Cameron R, Davies HR. Intra-pleural fibrinolytic therapy versus conservative management in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Syst Rev 2008: CD002312.
    1. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, et al. . Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 2008; 8: 173. doi:10.1186/1471-2180-8-173
    1. Zhu Z, Hawthorne ML, Guo Y, et al. . Tissue plasminogen activator combined with human recombinant deoxyribonuclease is effective therapy for empyema in a rabbit model. Chest 2006; 129: 1577–1583. doi:10.1378/chest.129.6.1577
    1. Kanellakis NI, Wrightson JM, Hallifax R, et al. . Biological effect of tissue plasminogen activator (t-PA) and DNase intrapleural delivery in pleural infection patients. BMJ Open Respir Res 2019; 6: e000440. doi:10.1136/bmjresp-2019-000440
    1. Hooper CE, Edey AJ, Wallis A, et al. . Pleural irrigation trial (PIT): a randomised controlled trial of pleural irrigation with normal saline versus standard care in patients with pleural infection. Eur Respir J 2015; 46: 456–463. doi:10.1183/09031936.00147214
    1. Jouneau S, Letheulle J, Desrues B. Repeated therapeutic thoracentesis to manage complicated parapneumonic effusions. Curr Opin Pulm Med 2015; 21: 387–392. doi:10.1097/MCP.0000000000000171
    1. Letheulle J, Tattevin P, Saunders L, et al. . Iterative thoracentesis as first-line treatment of complicated parapneumonic effusion. PLoS One 2014; 9: e84788. doi:10.1371/journal.pone.0084788
    1. Brutsche MH, Tassi G-F, Györik S, et al. . Treatment of sonographically stratified multiloculated thoracic empyema by medical thoracoscopy. Chest 2005; 128: 3303–3309. doi:10.1378/chest.128.5.3303
    1. Tassi GF, Marchetti GP, Pinelli V, et al. . Practical management of pleural empyema. Monaldi Arch Chest Dis 2010; 73: 124–129.
    1. Sumalani KK, Rizvi NA, Asghar A. Role of medical thoracoscopy in the management of multiloculated empyema. BMC Pulm Med 2018; 18: 179. doi:10.1186/s12890-018-0745-y
    1. Ravaglia C, Gurioli C, Tomassetti S, et al. . Is medical thoracoscopy efficient in the management of multiloculated and organized thoracic empyema? Respiration 2012; 84: 219–224. doi:10.1159/000339414
    1. Marks DJB, Fisk MD, Koo CY, et al. . Thoracic empyema: a 12-year study from a UK tertiary cardiothoracic referral centre. PLoS One 2012; 7: e30074. doi:10.1371/journal.pone.0030074
    1. Tong BC, Hanna J, Toloza EM, et al. . Outcomes of video-assisted thoracoscopic decortication. Ann Thorac Surg 2010; 89: 220–225. doi:10.1016/j.athoracsur.2009.09.021
    1. Lardinois D, Gock M, Pezzetta E, et al. . Delayed referral and gram-negative organisms increase the conversion thoracotomy rate in patients undergoing video-assisted thoracoscopic surgery for empyema. Ann Thorac Surg 2005; 79: 1851–1856. doi:10.1016/j.athoracsur.2004.12.031
    1. Meyer CN, Armbruster K, Kemp M, et al. . Pleural infection: a retrospective study of clinical outcome and the correlation to known etiology, co-morbidity and treatment factors. BMC Pulm Med 2018; 18: 160. doi:10.1186/s12890-018-0726-1
    1. Cargill TN, Hassan M, Corcoran JP, et al. . A systematic review of comorbidities and outcomes of adult patients with pleural infection. Eur Respir J 2019; 54: 1900541. doi:10.1183/13993003.00541-2019
    1. Luengo-Fernandez R, Penz E, Dobson M, et al. . Cost-effectiveness of intrapleural use of tissue plasminogen activator and DNase in pleural infection: evidence from the MIST2 randomised controlled trial. Eur Respir J 2019; 54: 1801550. doi:10.1183/13993003.01550-2018
    1. Rahman NM, Kahan BC, Miller RF, et al. . A clinical score (RAPID) to identify those at risk for poor outcome at presentation in patients with pleural infection. Chest 2014; 145: 848–855. doi:10.1378/chest.13-1558
    1. Beckert L, Brockway B, Simpson G, et al. . Phase I trial of the single-chain urokinase intrapleural LTI-01 in complicated parapneumonic effusions or empyema. JCI Insight 2019; 4: e127470. doi:10.1172/jci.insight.127470
    1. Boylan A, Broaddus V. Tumours of the pleura. In: Mason RJ, Murray JF, Nadel JA, et al., eds. Murray and Nadel's Textbook of Respiratory Medicine. 4th Edn. Philadelphia, Elsevier, 2005.
    1. Clive AO, Kahan BC, Hooper CE, et al. . Predicting survival in malignant pleural effusion: development and validation of the LENT prognostic score. Thorax 2014; 69: 1098–1104. doi:10.1136/thoraxjnl-2014-205285
    1. Porcel JM, Esquerda A, Vives M, et al. . Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol 2014; 50: 161–165. doi:10.1016/j.arbres.2013.11.007
    1. Sahn SA. Pleural diseases related to metastatic malignancies. Eur Respir J 1997; 10: 1907–1913. doi:10.1183/09031936.97.10081907
    1. Porcel JM, Gasol A, Bielsa S, et al. . Clinical features and survival of lung cancer patients with pleural effusions. Respirology 2015; 20: 654–659. doi:10.1111/resp.12496
    1. Psallidas I, Kanellakis NI, Gerry S. Development and validation of response markers to predict survival and pleurodesis success in patients with malignant pleural effusion (PROMISE): a multicohort analysis. Lancet Oncol 2018; 19: 930–939. doi:10.1016/S1470-2045(18)30294-8
    1. Fortin M, Taghizadeh N, Tremblay A. Procedures performed during hospitalizations for malignant pleural effusions: data from the 2012 National Inpatient Sample. Respiration Dis 2018; 95: 228–234. doi:10.1159/000485934
    1. Corcoran JR, Tazi-Mezalek R, Maldonado M, et al. . State of the art thoracic ultrasound: intervention and therapeutics. Thorax 2017; 72: 840–849. doi:10.1136/thoraxjnl-2016-209164
    1. Qureshi NR, Rahman NM, Gleeson FV. Thoracic ultrasound in the diagnosis of malignant pleural effusion. Thorax 2009; 64: 139–143. doi:10.1136/thx.2008.100545
    1. Gordon CE, Feller-Kopman D, Balk EM, et al. . Pneumothorax following thoracentesis: a systematic review and meta-analysis. Arch Intern Med 2010; 170: 332–339. doi:10.1001/archinternmed.2009.548
    1. Jiang B, Li X-L, Yin Y, et al. . Ultrasound elastography: a novel tool for the differential diagnosis of pleural effusion. Eur Respir J 2019; 54: 1802018. doi:10.1183/13993003.02018-2018
    1. Salamonsen MR, Lo AKC, Ng ACT, et al. . Novel use of pleural ultrasound can identify malignant entrapped lung prior to effusion drainage. Chest 2014; 146: 1286–1293. doi:10.1378/chest.13-2876
    1. Martin GA, Kidd AC, Tsim S, et al. . Inter-observer variation in image interpretation and the prognostic importance of non-expansile lung in malignant pleural effusion. Respirology 2020; 25: 298–304. doi:10.1111/resp.13681
    1. Leung AN, Müller NL, Miller RR. CT in differential diagnosis of diffuse pleural disease. AJR Am J Roentgenol 1990; 154: 487–492. doi:10.2214/ajr.154.3.2106209
    1. Porcel JM, Pardina M, Bielsa S, et al. . Derivation and validation of a CT scan scoring system for discriminating malignant from benign pleural effusions. Chest 2015; 147: 513–519. doi:10.1378/chest.14-0013
    1. Porcel JM, Hernández P, Martínez-Alonso M, et al. . Accuracy of fluorodeoxyglucose-PET imaging for differentiating benign from malignant pleural effusions: a meta-analysis. Chest 2015; 147: 502–512. doi:10.1378/chest.14-0820
    1. Lentz RJ, Shojaee S, Grosu HB, et al. . The impact of gravity vs suction-driven therapeutic thoracentesis on pressure-related complications: the GRAVITAS multicenter randomized controlled trial. Chest 2020; 157: 702–711. doi:10.1016/j.chest.2019.10.025
    1. Thomas R, Jenkins S, Eastwood PR, et al. . Physiology of breathlessness associated with pleural effusions. Curr Opin Pulm Med 2015; 21: 338–345. doi:10.1097/MCP.0000000000000174
    1. Lentz RJ, Lerner AD, Pannu JK, et al. . Routine monitoring with pleural manometry during therapeutic large-volume thoracentesis to prevent pleural-pressure-related complications: a multicentre, single-blind randomised controlled trial. Lancet Respir Med 2019; 7: 447–455. doi:10.1016/S2213-2600(18)30421-1
    1. Arnold DT, De Fonseka D, Perry S, et al. . Investigating unilateral pleural effusions: the role of cytology. Eur Respir J 2018; 52: 1801254, doi:10.1183/13993003.01254-2018
    1. Carter J, Miller JA, Feller-Kopman D, et al. . Molecular profiling of malignant pleural effusion in metastatic non-small-cell lung carcinoma. The effect of preanalytical factors. Ann Am Thorac Soc 2017; 14: 1169–1176.
    1. DeMaio A, Clarke JM, Dash R, et al. . Yield of malignant pleural effusion for detection of oncogenic driver mutations in lung adenocarcinoma. J Bronchology Interv Pulmonol 2019; 26: 96–101. doi:10.1097/LBR.0000000000000534
    1. Liu N, Sun RZ, Du J, et al. . Comparison of epidermal growth factor receptor gene mutations identified using pleural effusion and primary tumor tissue samples in non-small cell lung cancer. Appl Immunohistochem Mol Morphol 2018; 26: e44–e51. doi:10.1097/PAI.0000000000000543
    1. Yang J, Lee OJ, Son SM, et al. . EGFR mutation status in lung adenocarcinoma-associated malignant pleural effusion and efficacy of EGFR tyrosine kinase inhibitors. Cancer Res Treat 2018; 50: 908–916. doi:10.4143/crt.2017.378
    1. Carbone DP, Reck M, Paz-Ares L, et al. . First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017; 376: 2415–2426. doi:10.1056/NEJMoa1613493
    1. Reck M, Rodríguez-Abreu D, Robinson AG, et al. . Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–1833. doi:10.1056/NEJMoa1606774
    1. Mok TSK, Wu YL, Kudaba I, et al. . Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019; 393: 1819–1830. doi:10.1016/S0140-6736(18)32409-7
    1. Grosu HB, Arriola A, Stewart J, et al. . PD-L1 detection in histology specimens and matched pleural fluid cell blocks of patients with NSCLC. Respirology 2019; 24: 1198–1203. doi:10.1111/resp.13614
    1. Xu J, Han X, Liu C, et al. . PD-L1 expression in pleural effusions of pulmonary adenocarcinoma and survival prediction: a controlled study by pleural biopsy. Sci Rep 2018; 8: 11206. doi:10.1038/s41598-018-29156-5
    1. Heymann JJ, Bulman WA, Swinarski D, et al. . PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol 2017; 125: 896–907. doi:10.1002/cncy.21937
    1. Bibby AC, Dorn P, Psallidas I, et al. . ERS/EACTS statement on the management of malignant pleural effusions. Eur Respir J 2018; 52: 1800349. doi:10.1183/13993003.00349-2018
    1. Rahman NM, Gleeson FV. Image-guided pleural biopsy. Curr Opin Pulm Med 2008; 14: 331–336. doi:10.1097/MCP.0b013e3282fe9a04
    1. Maskell NA, Gleeson FV, Davies RJO. Standard pleural biopsy versus CT-guided cutting-needle biopsy for diagnosis of malignant disease in pleural effusions: a randomised controlled trial. Lancet 2003; 361: 1326–1330. doi:10.1016/S0140-6736(03)13079-6
    1. de Fonseka D, Underwood W, Stadon L, et al. . Randomised controlled trial to compare the diagnostic yield of positron emission tomography CT (PET-CT) TARGETed pleural biopsy versus CT-guided pleural biopsy in suspected pleural malignancy (TARGET trial). BMJ Open Respir Res 2018; 5: e000270. doi:10.1136/bmjresp-2017-000270
    1. Diacon AH, Schuurmans MM, Theron J, et al. . Safety and yield of ultrasound-assisted transthoracic biopsy performed by pulmonologists. Respir Int Rev Thorac Dis 2004; 71: 519–522.
    1. Harris RJ, Kavuru MS, Rice TW, et al. . The diagnostic and therapeutic utility of thoracoscopy. A review. Chest 1995; 108: 828–841. doi:10.1378/chest.108.3.828
    1. Rahman NM, Ali NJ, Brown G, et al. . Local anaesthetic thoracoscopy: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010; 65: Suppl. 2, ii54–ii60. doi:10.1136/thx.2010.137018
    1. Menzies R, Charbonneau M. Thoracoscopy for the diagnosis of pleural disease. Ann Intern Med 1991; 114: 271–276. doi:10.7326/0003-4819-114-4-271
    1. Greillier L, Cavailles A, Fraticelli A, et al. . Accuracy of pleural biopsy using thoracoscopy for the diagnosis of histologic subtype in patients with malignant pleural mesothelioma. Cancer 2007; 110: 2248–2252. doi:10.1002/cncr.23034
    1. Bendixen M, Jørgensen OD, Kronborg C, et al. . Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. Lancet Oncol 2016; 17: 836–844. doi:10.1016/S1470-2045(16)00173-X
    1. Skalski JH, Astoul P, Maldonado F. Medical thoracoscopy. Semin Respir Crit Care Med 2014; 35: 732–743. doi:10.1055/s-0034-1395796
    1. Dhooria S, Singh N, Aggarwal AN, et al. . A randomized trial comparing the diagnostic yield of rigid and semirigid thoracoscopy in undiagnosed pleural effusions. Respir Care 2014; 59: 756–764. doi:10.4187/respcare.02738
    1. Thomas R, Karunarathne S, Jennings B, et al. . Pleuroscopic cryoprobe biopsies of the pleura: a feasibility and safety study. Respirology 2015; 20: 327–332. doi:10.1111/resp.12441
    1. Roberts ME, Neville E, Berrisford RG, et al. . BTS Pleural Disease Guideline Group, Management of a malignant pleural effusion: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010; 65 Suppl 2: ii32–ii40. doi:10.1136/thx.2010.136994
    1. Rodriguez-Panadero F, Montes-Worboys A. Mechanisms of pleurodesis. Respir Int Rev Thorac Dis 2012; 83: 91–98.
    1. Dresler CM, Olak J, Herndon JE, et al. . Phase III intergroup study of talc poudrage vs talc slurry sclerosis for malignant pleural effusion. Chest 2005; 127: 909–915. doi:10.1378/chest.127.3.909
    1. Brant A, Eaton T. Serious complications with talc slurry pleurodesis. Respirology 2001; 6: 181–185. doi:10.1046/j.1440-1843.2001.00327.x
    1. Hassan M, Merce RM, Maskell NA, et al. . Survival in patients with malignant pleural effusion undergoing talc pleurodesis. Lung Cancer Amst Neth 2019; 137: 14–18. doi:10.1016/j.lungcan.2019.09.003
    1. Feller-Kopman DJ, Reddy CB, DeCamp MM, et al. . Management of malignant pleural effusions. An Official ATS/STS/STR Clinical Practice Guideline. Am J Respir Crit Care Med 2018; 198: 839–849. doi:10.1164/rccm.201807-1415ST
    1. Bhatnagar R, Piotrowska HEG, Laskawiec-Szkonter M, et al. . Effect of thoracoscopic talc poudrage vs talc slurry via chest tube on pleurodesis failure rate among patients with malignant pleural effusions: a randomized clinical trial. JAMA 2019; 323: 60–69. doi:10.1001/jama.2019.19997
    1. Clive AO, Jones HE, Bhatnagar R, et al. . Interventions for the management of malignant pleural effusions: a network meta-analysis. Cochrane Database Syst Rev 2016; 2016: CD010529. doi:10.1002/14651858.CD010529.pub2
    1. Xia H, Wang XJ, Zhou Q, et al. . Efficacy and safety of talc pleurodesis for malignant pleural effusion: a meta-analysis. PLoS One 2014; 9: e87060. doi:10.1371/journal.pone.0087060
    1. Fysh ETH, Tremblay A, Feller-Kopman D, et al. . Clinical outcomes of indwelling pleural catheter-related pleural infections: an international multicenter study. Chest 2013; 144: 1597–1602. doi:10.1378/chest.12-3103
    1. Tremblay A, Michaud G. Single-center experience with 250 tunnelled pleural catheter insertions for malignant pleural effusion. Chest 2006; 129: 362–368. doi:10.1378/chest.129.2.362
    1. Putnam JB, Light RW, Rodriguez RM, et al. . A randomized comparison of indwelling pleural catheter and doxycycline pleurodesis in the management of malignant pleural effusions. Cancer 1999; 86: 1992–1999. doi:10.1002/(SICI)1097-0142(19991115)86:10<1992::AID-CNCR16>;2-M
    1. Thomas R, Fysh ETH, Smith NA, et al. . Effect of an indwelling pleural catheter vs talc pleurodesis on hospitalization days in patients with malignant pleural effusion: the AMPLE randomized clinical trial. JAMA 2017; 318: 1903–1912. doi:10.1001/jama.2017.17426
    1. Warren WH, Kim AW, Liptay MJ. Identification of clinical factors predicting Pleurx catheter removal in patients treated for malignant pleural effusion. Eur J Cardiothorac Surg 2008; 33: 89–94. doi:10.1016/j.ejcts.2007.10.002
    1. Davies HE, Mishra EK, Kahan BC, et al. . Effect of an indwelling pleural catheter vs chest tube and talc pleurodesis for relieving dyspnea in patients with malignant pleural effusion: the TIME2 randomized controlled trial. JAMA 2012; 307: 2383–2389. doi:10.1001/jama.2012.5535
    1. Wahidi MM, Reddy C, Yarmus L, et al. . Randomized trial of pleural fluid drainage frequency in patients with malignant pleural effusions. The ASAP trial. Am J Respir Crit Care Med 2017; 195: 1050–1057. doi:10.1164/rccm.201607-1404OC
    1. Muruganandan S, Azzopardi M, Fitzgerald DB, et al. . Aggressive versus symptom-guided drainage of malignant pleural effusion via indwelling pleural catheters (AMPLE-2): an open-label randomised trial. Lancet Respir Med 2018; 6: 671–680. doi:10.1016/S2213-2600(18)30288-1
    1. Olfert JAP, Penz ED, Manns BJ, et al. . Cost-effectiveness of indwelling pleural catheter compared with talc in malignant pleural effusion. Respirology 2017; 22: 764–770. doi:10.1111/resp.12962
    1. Reddy C, Ernst A, Lamb C, et al. . Rapid pleurodesis for malignant pleural effusions: a pilot study. Chest 2011; 139: 1419–1423. doi:10.1378/chest.10-1868
    1. BoDNujaoude Z, Bartter T, Abboud M, et al. . Pleuroscopic pleurodesis combined with tunneled pleural catheter for management of malignant pleural effusion: a prospective observational study. J Bronchology Interv Pulmonol 2015; 22: 237–243. doi:10.1097/LBR.0000000000000186
    1. Ahmed L, Ip H, Rao D, et al. . Talc pleurodesis through indwelling pleural catheters for malignant pleural effusions: retrospective case series of a novel clinical pathway. Chest 2014; 146: e190–e194. doi:10.1378/chest.14-0394
    1. Bhatnagar R, Keenan EK, Morley AJ, et al. . Outpatient talc administration by indwelling pleural catheter for malignant effusion. N Engl J Med 2018; 378: 1313–1322. doi:10.1056/NEJMoa1716883
    1. Tremblay A, Kearney CT, Hanks C, et al. . Local and systemic effects of a silver nitrate coated indwelling pleural catheter in an animal model of pleurodesis. Exp Lung Res 2017; 43: 388–394. doi:10.1080/01902148.2017.1384865
    1. Bhatnagar R, Zahan-Evans N, Kearney C, et al. . A novel drug-eluting indwelling pleural catheter for the management of malignant effusions. Am J Respir Crit Care Med 2018; 197: 136–138. doi:10.1164/rccm.201701-0097LE

Source: PubMed

3
Suscribir