Risk-of-falling related outcomes improved in community-dwelling older adults after a 6-week sideways walking intervention: a feasibility and pilot study

Andreas Skiadopoulos, Nick Stergiou, Andreas Skiadopoulos, Nick Stergiou

Abstract

Background: Aging increases fall risk and alters gait mechanics and control. Our previous work has identified sideways walking as a potential training regimen to decrease fall risk by improving frontal plane control in older adults' gait. The purposes of this pilot study were to test the feasibility of sideways walking as an exercise intervention and to explore its preliminary effects on risk-of-falling related outcomes.

Methods: We conducted a 6-week single-arm intervention pilot study. Participants were community-dwelling older adults ≥ 65 years old with walking ability. Key exclusion criteria were neuromusculoskeletal and cardiovascular disorders that affect gait. Because initial recruitment rate through University of Nebraska at Omaha and Omaha community was slower than expected (3 participants∙week- 1), we expanded the recruitment pool through the Mind & Brain Health Labs registry of the University of Nebraska Medical Center. Individualized sideways walking intervention carried out under close supervision in a 200 m indoor walking track (3 days∙week- 1). Recruitment and retention capability, safety, and fidelity of intervention delivery were recorded. We also collected (open-label) walking speed, gait variability, self-reported and performance-based functional measures to assess participants' risk-of-falling at baseline and post-intervention: immediate, and 6 weeks after the completion of the intervention.

Results: Over a 7-month period, 42 individuals expressed interest, 21 assessed for eligibility (21/42), and 15 consented to participate (15/21). Most of the potential participants were reluctant to commit to a 6-week intervention. Desired recruitment rate was achieved after revising the recruitment strategy. One participant dropped out (1/15). Remaining participants demonstrated excellent adherence to the protocol. Participants improved on most outcomes and the effects remained at follow-up. No serious adverse events were recorded during the intervention.

Conclusions: Our 6-week sideways walking training was feasible to deliver and demonstrated strong potential as an exercise intervention to improve risk-of-falling outcomes in community-dwelling older adults. In a future trial, alternative clinical tools should be considered to minimize the presence of ceiling/floor effects. A future large trial is needed to confirm sideways walking as a fall prevention intervention.

Trial registration: ClinicalTrials.gov identifier: NCT04505527 . Retrospectively registered 10 August 2020.

Keywords: Aging; Balance; Fear of falling; Gait; Lateral stepping; Stability; Variability.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Participant recruitment and study enrolment flow chart (*for treadmill walking speed and gait variability outcomes, n = 12)
Fig. 2
Fig. 2
Progress of participant recruitment rate compared to study’s goal rate
Fig. 3
Fig. 3
a Mean weekly changes on performance and b average improvement over the 6-week sideways walking intervention. Performance was measured as the time in seconds needed to cover 10 m walking sideways during the trials (* p < 0.05; ** p < 0.01; *** p < 0.001)

References

    1. Bergen G, Stevens MR, Burns ER. Falls and fall injuries among adults aged ≥ 65 years - United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:993–8. doi: 10.15585/mmwr.mm6537a2.
    1. Turner S, Kisser R, Rogmans W. Factsheet falls in older adults in the EU-28. Amsterdam: EuroSafe; 2015. .
    1. Hartholt KA, Lee R, Burns ER, Beeck EF van. Mortality from falls among US adults aged 75 years or older, 2000–2016. JAMA. 2019;321:2131–3.
    1. Tinetti ME, Kumar C. The patient who falls: “It’s always a trade-off.”. JAMA. 2010;303:258. doi: 10.1001/jama.2009.2024.
    1. Hartholt KA, van Beeck EF, van der Cammen TJM. Mortality from falls in Dutch adults 80 years and older, 2000–2016. JAMA. 2018;319:1380. doi: 10.1001/jama.2018.1444.
    1. Padrón-Monedero A, Damián J, Pilar Martin M, Fernández-Cuenca R. Mortality trends for accidental falls in older people in Spain, 2000–2015. BMC Geriatr. 2017;17:276. doi: 10.1186/s12877-017-0670-6.
    1. Houry D, Florence C, Baldwin G, Stevens J, McClure R. The CDC Injury Center’s response to the growing public health problem of falls among older adults. Am J Lifestyle Med. 2015;10:74–7. doi: 10.1177/1559827615600137.
    1. Guirguis-Blake JM, Michael YL, Perdue LA, Coppola EL, Beil TL. Interventions to prevent falls in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA. 2018;319:1705–16. doi: 10.1001/jama.2017.21962.
    1. Hopewell S, Adedire O, Copsey BJ, Boniface GJ, Sherrington C, Clemson L, et al. Multifactorial and multiple component interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2018;7:CD012221.
    1. Kümmel J, Kramer A, Giboin L-S, Gruber M. Specificity of balance training in healthy individuals: A systematic review and meta-analysis. Sports Med. 2016;46:1261–71. doi: 10.1007/s40279-016-0515-z.
    1. Okubo Y, Schoene D, Lord SR. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br J Sports Med. 2017;51:586–93. doi: 10.1136/bjsports-2015-095452.
    1. Robertson MC, Gillespie LD. Fall prevention in community-dwelling older adults. JAMA. 2013;309:1406. doi: 10.1001/jama.2013.3130.
    1. Sherrington C, Fairhall NJ, Wallbank GK, Tiedemann A, Michaleff ZA, Howard K, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424.
    1. Holliday P, Fernie G, Gryfe C, Griggs G. Video recording of spontaneous falls of the elderly. In: Gray B, editor. Slips, Stumbles, and Falls: Pedestrian Footwear and Surfaces. West Conshohocken: ASTM International; 1990. pp. 7–7.
    1. Nachreiner NM, Findorff MJ, Wyman JF, McCarthy TC. Circumstances and consequences of falls in community-dwelling older women. J Womens Health 2002. 2007;16:1437–46.
    1. Nevitt MC, Cummings SR. Type of Fall and Risk of Hip and Wrist Fractures: The Study of Osteoporotic Fractures. J Am Geriatr Soc. 1993;41:1226–34. doi: 10.1111/j.1532-5415.1993.tb07307.x.
    1. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet. 2013;381:47–54. doi: 10.1016/S0140-6736(12)61263-X.
    1. Brauer SG, Burns YR, Galley P. A prospective study of laboratory and clinical measures of postural stability to predict community-dwelling fallers. J Gerontol A Biol Sci Med Sci. 2000;55:M469–76. doi: 10.1093/gerona/55.8.M469.
    1. Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP. Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev. 2009;33:271–8. doi: 10.1016/j.neubiorev.2008.08.012.
    1. Paraskevoudi N, Balci F, Vatakis A. “Walking” through the sensory, cognitive, and temporal degradations of healthy aging. Ann N Y Acad Sci. 2018;1426:72–92. doi: 10.1111/nyas.13734.
    1. Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human locomotion: a review of current measures. J R Soc Interface. 2013;10:20120999. doi: 10.1098/rsif.2012.0999.
    1. Granata KP, Lockhart TE. Dynamic stability differences in fall-prone and healthy adults. J Electromyogr Kinesiol. 2008;18:172–8. doi: 10.1016/j.jelekin.2007.06.008.
    1. van Ooijen MW, Roerdink M, Trekop M, Visschedijk J, Janssen TW, Beek PJ. Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial. BMC Geriatr. 2013;13:34. doi: 10.1186/1471-2318-13-34.
    1. Kuo AD, Donelan JM. Dynamic Principles of Gait and Their Clinical Implications. Phys Ther. 2010;90:157–74. doi: 10.2522/ptj.20090125.
    1. Kuo AD. Stabilization of Lateral Motion in Passive Dynamic Walking. Int J Robot Res. 1999;18:917–30. doi: 10.1177/02783649922066655.
    1. Bauby CE, Kuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33:1433–40. doi: 10.1016/S0021-9290(00)00101-9.
    1. Dean JC, Alexander NB, Kuo AD. The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng. 2007;54:1919–26. doi: 10.1109/TBME.2007.901031.
    1. Hobbelen DGE, Wisse M. Active lateral foot placement for 3d stabilization of a limit cycle walker prototype. Int J Humanoid Robot. 2009;06:93–116. doi: 10.1142/S0219843609001632.
    1. O’Connor SM, Kuo AD. Direction-dependent control of balance during walking and standing. J Neurophysiol. 2009;102:1411–9. doi: 10.1152/jn.00131.2009.
    1. Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol. 2014;112:374–83. doi: 10.1152/jn.00138.2014.
    1. Franz JR, Francis CA, Allen MS, O’Connor SM, Thelen DG. Advanced age brings a greater reliance on visual feedback to maintain balance during walking. Hum Mov Sci. 2015;40:381–92. doi: 10.1016/j.humov.2015.01.012.
    1. Francis CA, Franz JR, O’Connor SM, Thelen DG. Gait variability in healthy old adults is more affected by a visual perturbation than by a cognitive or narrow step placement demand. Gait Posture. 2015;42:380–5. doi: 10.1016/j.gaitpost.2015.07.006.
    1. Bruijn SM, van Dieën JH. Control of human gait stability through foot placement. J R Soc Interface. 2018;15:20170816. doi: 10.1098/rsif.2017.0816.
    1. McGeer T. Passive dynamic walking. Int J Robot Res. 1990;9:62–82. doi: 10.1177/027836499000900206.
    1. Zatsiorsky VM, Gregor RJ. Mechanical power and work in human movement. In: Sparrow WA, editor. Energetics of Human Activity. Human Kinetics; 2000.
    1. Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science. 2005;307:1082–5. doi: 10.1126/science.1107799.
    1. Skiadopoulos A, Moore EE, Sayles HR, Schmid KK, Stergiou N. Step width variability as a discriminator of age-related gait changes. J NeuroEngineering Rehabil. 2020;17:41. doi: 10.1186/s12984-020-00671-9.
    1. Owings TM, Grabiner MD. Variability of step kinematics in young and older adults. Gait Posture. 2004;20:26–9. doi: 10.1016/S0966-6362(03)00088-2.
    1. Owings TM, Grabiner MD. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J Biomech. 2004;37:935–8. doi: 10.1016/j.jbiomech.2003.11.012.
    1. Woledge RC, Birtles DB, Newham DJ. The variable component of lateral body sway during walking in young And older humans. J Gerontol A Biol Sci Med Sci. 2005;60:1463–8. doi: 10.1093/gerona/60.11.1463.
    1. Grabiner P, Biswas ST, Grabiner MD. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001;82:31–5. doi: 10.1053/apmr.2001.18219.
    1. Almarwani M, VanSwearingen JM, Perera S, Sparto PJ, Brach JS. Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Arch Gerontol Geriatr. 2016;66:54–61. doi: 10.1016/j.archger.2016.05.001.
    1. Hausdorff JM. Gait variability: methods, modeling and meaning. J NeuroEngineering Rehabil. 2005;2:19. doi: 10.1186/1743-0003-2-19.
    1. Yang F, Pai Y-C. Can stability really predict an impending slip-related fall among older adults? J Biomech. 2014;47:3876–81. doi: 10.1016/j.jbiomech.2014.10.006.
    1. Kuo AD. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Hum Mov Sci. 2007;26:617–56. doi: 10.1016/j.humov.2007.04.003.
    1. Koopman B, Meuleman JH, van Asseldonk EHF, van der Kooij H. Lateral balance control for robotic gait training. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). 2013. p. 1–6.
    1. Dragunas AC, Gordon KE. Body weight support impacts lateral stability during treadmill walking. J Biomech. 2016;49:2662–8. doi: 10.1016/j.jbiomech.2016.05.026.
    1. Kyvelidou A, Kurz MJ, Ehlers JL, Stergiou N. Aging and partial body weight support affects gait variability. J NeuroEngineering Rehabil. 2008;5:22. doi: 10.1186/1743-0003-5-22.
    1. Heitkamp LN, Stimpson KH, Dean JC. Application of a novel force-field to manipulate the relationship between pelvis motion and step width in human walking. IEEE Trans Neural Syst Rehabil Eng. 2019;27:2051–8. doi: 10.1109/TNSRE.2019.2941372.
    1. Wurdeman SR, Stergiou N. Temporal structure of variability reveals similar control mechanisms during lateral stepping and forward walking. Gait Posture. 2013;38:73–8. doi: 10.1016/j.gaitpost.2012.10.017.
    1. Wurdeman SR, Huben NB, Stergiou N. Variability of gait is dependent on direction of progression: implications for active control. J Biomech. 2012;45:653–9. doi: 10.1016/j.jbiomech.2011.12.014.
    1. El-Kotob R, Giangregorio LM. Pilot and feasibility studies in exercise, physical activity, or rehabilitation research. Pilot Feasibility Stud. 2018;4:137. doi: 10.1186/s40814-018-0326-0.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239. doi: 10.1136/bmj.i5239.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687. doi: 10.1136/bmj.g1687.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med Sci Sports Exerc. 2011;43:1334–59. doi: 10.1249/MSS.0b013e318213fefb.
    1. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res. 2019;33:2019–52. doi: 10.1519/JSC.0000000000003230.
    1. Lusardi MM, Fritz S, Middleton A, Allison L, Wingood M, Phillips E, et al. Determining risk of falls in community dwelling older adults: A systematic review and meta-analysis using posttest probability. J Geriatr Phys Ther. 2017;40:1–36. doi: 10.1519/JPT.0000000000000099.
    1. Cesari M, Kritchevsky SB, Penninx BWHJ, Nicklas BJ, Simonsick EM, Newman AB, et al. Prognostic value of usual gait speed in well-functioning older people–results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53:1675–80. doi: 10.1111/j.1532-5415.2005.53501.x.
    1. Montero-Odasso M, Schapira M, Soriano ER, Varela M, Kaplan R, Camera LA, et al. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci. 2005;60:1304–9. doi: 10.1093/gerona/60.10.1304.
    1. Perera S, Patel KV, Rosano C, Rubin SM, Satterfield S, Harris T, et al. Gait speed predicts incident disability: A pooled analysis. J Gerontol A Biol Sci Med Sci. 2016;71:63–71. doi: 10.1093/gerona/glv126.
    1. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait Speed and Survival in Older Adults. JAMA. 2011;305:50–8. doi: 10.1001/jama.2010.1923.
    1. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54:743–9. doi: 10.1111/j.1532-5415.2006.00701.x.
    1. Hausdorff JM, Edelberg HK, Mitchell SL, Goldberger AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil. 1997;78:278–83. doi: 10.1016/S0003-9993(97)90034-4.
    1. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch Phys Med Rehabil. 2001;82:1050–6. doi: 10.1053/apmr.2001.24893.
    1. Brach JS, Wert D, VanSwearingen JM, Newman AB, Studenski SA. Use of stance time variability for predicting mobility disability in community-dwelling older persons: A prospective study. J Geriatr Phys Ther. 2012;35:112. doi: 10.1519/JPT.0b013e318243e5f9.
    1. Brach JS, Perera S, Studenski S, Katz M, Hall C, Verghese J. Meaningful change in measures of gait variability in older adults. Gait Posture. 2010;31:175–9. doi: 10.1016/j.gaitpost.2009.10.002.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Savva GM, Donoghue OA, Horgan F, O’Regan C, Cronin H, Kenny RA. Using Timed Up-and-Go to identify frail members of the older population. J Gerontol Ser A. 2013;68:441–6. doi: 10.1093/gerona/gls190.
    1. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health Rev Can Sante Publique. 1992;83(Suppl 2):7–11.
    1. Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the Mini-BESTest and Berg balance scale in patients with balance disorders. Phys Ther. 2013;93:158–67. doi: 10.2522/ptj.20120171.
    1. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I) Age Ageing. 2005;34:614–9. doi: 10.1093/ageing/afi196.
    1. Delbaere K, Close JCT, Mikolaizak AS, Sachdev PS, Brodaty H, Lord SR. The Falls Efficacy Scale International (FES-I). A comprehensive longitudinal validation study. Age Ageing. 2010;39:210–6. doi: 10.1093/ageing/afp225.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. doi: 10.1016/0022-3956(75)90026-6.
    1. Yesavage JA, Sheikh JI. 9/Geriatric Depression Scale (GDS) Clin Gerontol. 1986;5:165–73. doi: 10.1300/J018v05n01_09.
    1. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23:129–38.
    1. Paterson KL, Lythgo ND, Hill KD. Gait variability in younger and older adult women is altered by overground walking protocol. Age Ageing. 2009;38:745–8. doi: 10.1093/ageing/afp159.
    1. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. doi: 10.3758/BF03193146.
    1. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Med Care. 1989;27:178–89. doi: 10.1097/00005650-198903001-00015.
    1. Stokes EK. Outcome measurement and practice. In: Rehabilitation Outcome Measures. Elsevier; 2011. p. 3–12.
    1. R Core Team. R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing; 2020. .
    1. Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS, Højsgaard S, et al. afex: Analysis of Factorial Experiments. 2020. . Accessed 19 May 2020.
    1. Lenth R, Singmann H, Love J, Buerkner P, Herve M. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2020. . Accessed 19 May 2020.
    1. Lüdecke D. Sjstats: Statistical Functions for Regression Models. 2018. 10.5281/zenodo.1489175. Accessed 19 May 2020.
    1. Kassambara A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2020. . Accessed 19 May 2020.
    1. Stubbs B, Eggermont L, Patchay S, Schofield P. Older adults with chronic musculoskeletal pain are at increased risk of recurrent falls and the brief pain inventory could help identify those most at risk. Geriatr Gerontol Int. 2015;15:881–8. doi: 10.1111/ggi.12357.
    1. Chan CB, Ryan DA. Assessing the effects of weather conditions on physical activity participation using objective measures. Int J Environ Res Public Health. 2009;6:2639–54. doi: 10.3390/ijerph6102639.
    1. Chan CB, Ryan DA, Tudor-Locke C. Relationship between objective measures of physical activity and weather: a longitudinal study. Int J Behav Nutr Phys Act. 2006;3:21. doi: 10.1186/1479-5868-3-21.
    1. Tu W, Stump TE, Damush TM, Clark DO. The effects of health and environment on exercise-class participation in older, urban women. J Aging Phys Act. 2004;12:480–96. doi: 10.1123/japa.12.4.480.
    1. Pardasaney PK, Latham NK, Jette AM, Wagenaar RC, Ni P, Slavin MD, et al. Sensitivity to Change and Responsiveness of Four Balance Measures for Community-Dwelling Older Adults. Phys Ther. 2012;92:388–97. doi: 10.2522/ptj.20100398.
    1. Schlenstedt C, Brombacher S, Hartwigsen G, Weisser B, Möller B, Deuschl G. Comparing the Fullerton advanced balance scale with the Mini-BESTest and Berg balance scale to assess postural control in patients with parkinson disease. Arch Phys Med Rehabil. 2015;96:218–25. doi: 10.1016/j.apmr.2014.09.002.
    1. Rose DJ, Lucchese N, Wiersma LD. Development of a multidimensional balance scale for use with functionally independent older adults. Arch Phys Med Rehabil. 2006;87:1478–85. doi: 10.1016/j.apmr.2006.07.263.
    1. Newell AM, VanSwearingen JM, Hile E, Brach JS. The Modified Gait Efficacy Scale: Establishing the psychometric properties in older adults. Phys Ther. 2012;92:318–28. doi: 10.2522/ptj.20110053.
    1. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23:314–22. doi: 10.1123/japa.2013-0236.
    1. Wang C, Sheu C, Protas E. Test-retest reliability and measurement errors of six mobility tests in the community-dwelling elderly. Asian J Gerontol Geriatr. 2009;4:8–13.
    1. Northgraves MJ, Hayes SC, Marshall P, Madden LA, Vince RV. The test-retest reliability of four functional mobility tests in apparently healthy adults. Isokinet Exerc Sci. 2016;24:171–9. doi: 10.3233/IES-160614.
    1. Bohannon RW. Reference values for the Timed Up and Go test: A descriptive meta-Analysis. J Geriatr Phys Ther. 2006;29:64–8. doi: 10.1519/00139143-200608000-00004.
    1. Makizako H, Shimada H, Doi T, Tsutsumimoto K, Nakakubo S, Hotta R, et al. Predictive cutoff values of the Five-Times Sit-to-Stand test and the Timed “Up & Go” test for disability incidence in older people dwelling in the community. Phys Ther. 2017;97:417–24.
    1. Chun S, Shin DW, Han K, Jung JH, Kim B, Jung H-W, et al. The Timed Up and Go test and the ageing heart: Findings from a national health screening of 1,084,875 community-dwelling older adults. Eur J Prev Cardiol. 2019;:2047487319882118.
    1. Bergland A, Jørgensen L, Emaus N, Strand BH. Mobility as a predictor of all-cause mortality in older men and women: 11.8 year follow-up in the Tromsø study. BMC Health Serv Res. 2017;17:22. doi: 10.1186/s12913-016-1950-0.
    1. Almurad ZMH, Roume C, Blain H, Delignières D. Complexity matching: Restoring the complexity of locomotion in older people through arm-in-arm walking. Front Physiol. 2018;9:1766. doi: 10.3389/fphys.2018.01766.

Source: PubMed

3
Suscribir