Klotho, Aging, and the Failing Kidney

Sarah Buchanan, Emilie Combet, Peter Stenvinkel, Paul G Shiels, Sarah Buchanan, Emilie Combet, Peter Stenvinkel, Paul G Shiels

Abstract

Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.

Keywords: kidney; Klotho; aging; phosphate; senotherapeutic.

Copyright © 2020 Buchanan, Combet, Stenvinkel and Shiels.

Figures

Figure 1
Figure 1
Schematic representation of the role of Klotho in the regulation of bone and mineral metabolism.
Figure 2
Figure 2
Schematic representation of a range of possible and existing Klotho based senotherapies.

References

    1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. . Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. (1997) 390:45–51. 10.1038/36285
    1. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. . Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. (2004) 113:561–8. 10.1172/JCI200419081
    1. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. (2013) 75:503–33. 10.1146/annurev-physiol-030212-183727
    1. Kuro-o M, Moe OW. FGF23-αKlotho as a paradigm for a kidney-bone network. Bone. (2017) 100:4–18. 10.1016/j.bone.2016.11.013
    1. Kuro-o M. The Klotho proteins in health and disease. Nat Rev Nephrol. (2019) 15:27–44. 10.1038/s41581-018-0078-3
    1. Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta BBA Gene Struct Expr. (2002) 1576:341–5. 10.1016/S0167-4781(02)00281-6
    1. Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, et al. . Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein. Mech Dev. (2000) 98:115–9. 10.1016/S0925-4773(00)00439-1
    1. Zou D, Wu W, He Y, Ma S, Gao J. The role of Klotho in chronic kidney disease. BMC Nephrol. (2018) 19:285. 10.1186/s12882-018-1094-z
    1. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the humanklothogene and its two transcripts encoding membrane and secretedklothoProtein. Biochem Biophys Res Commun. (1998) 242:626–30. 10.1006/bbrc.1997.8019
    1. Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro-O M, et al. . Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. (2017) 91:1104–14. 10.1016/j.kint.2016.10.034
    1. Kurosu H. Suppression of aging in mice by the hormone Klotho. Science. (2005) 309:1829–33. 10.1126/science.1112766
    1. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, et al. . Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. (2004) 565:143–7. 10.1016/j.febslet.2004.03.090
    1. Akimoto T, Yoshizawa H, Watanabe Y, Numata A, Yamazaki T, Takeshima E, et al. . Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. (2012) 13:155. 10.1186/1471-2369-13-155
    1. Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, et al. . Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci Lett. (2014) 558:37–40. 10.1016/j.neulet.2013.10.058
    1. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. . FGF-23 is a potent regulator of Vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. (2003) 19:429–35. 10.1359/JBMR.0301264
    1. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu M-C, et al. . α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. (2018) 553:461–6. 10.1038/nature25451
    1. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. . Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. (2006) 281:6120–3. 10.1074/jbc.C500457200
    1. Lindberg K, Amin R, Moe OW, Hu M-C, Erben RG, Östman Wernerson A, et al. . The kidney is the principal organ mediating Klotho effects. J Am Soc Nephrol. (2014) 25:2169–75. 10.1681/ASN.2013111209
    1. Shi M, Flores B, Gillings N, Bian A, Cho HJ, Yan S, et al. . αKlotho mitigates progression of AKI to CKD through activation of autophagy. J Am Soc Nephrol. (2016) 27:2331–45. 10.1681/ASN.2015060613
    1. Neyra JA, Hu MC. Potential application of Klotho in human chronic kidney disease. Bone. (2017) 100:41–9. 10.1016/j.bone.2017.01.017
    1. Zhu L, Stein LR, Kim D, Ho K, Yu G-Q, Zhan L, et al. . Klotho controls the brain–immune system interface in the choroid plexus. Proc Natl Acad Sci USA. (2018) 115:E11388–96. 10.1073/pnas.1808609115
    1. Quarles LD. Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens. (2019) 28:16–25. 10.1097/MNH.0000000000000467
    1. Richter B, Faul C. FGF23 actions on target tissues—with and without Klotho. Front Endocrinol. (2018) 9:189. 10.3389/fendo.2018.00189
    1. Li S, Yu L, He A, Liu Q. Klotho inhibits unilateral ureteral obstruction-induced endothelial-to-mesenchymal transition via TGF-β1/Smad2/Snail1 signaling in mice. Front Pharmacol. (2019) 10:348. 10.3389/fphar.2019.00348
    1. Iurciuc S, Cimpean AM, Mitu F, Heredea R, Iurciuc M. Vascular aging and subclinical atherosclerosis: why such a “never ending” and challenging story in cardiology? Clin Interv Aging. (2017) 12:1339–45. 10.2147/CIA.S141265
    1. Mencke R, Hillebrands J-L. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. (2017) 35:124–46. 10.1016/j.arr.2016.09.001
    1. Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, et al. . Vitamin D receptor agonists increase Klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. (2012) 82:1261–70. 10.1038/ki.2012.322
    1. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, et al. . Aging, frailty and age-related diseases. Biogerontology. (2010) 11:547–63. 10.1007/s10522-010-9287-2
    1. Shiels PG, McGuinness D, Eriksson M, Kooman JP, Stenvinkel P. The role of epigenetics in renal ageing. Nat Rev Nephrol. (2017) 13:471–82. 10.1038/nrneph.2017.78
    1. Shiels PG, Stenvinkel P, Kooman JP, McGuinness D. Circulating markers of ageing and allostatic load: a slow train coming. Pract Lab Med. (2016) 7:49–54. 10.1016/j.plabm.2016.04.002
    1. Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical genetic pathways that modulate aging in multiple species: figure 1. Cold Spring Harb Perspect Med. (2015) 5:a025114. 10.1101/cshperspect.a025114
    1. Stenvinkel P, Painer J, Kuro-o M, Lanaspa M, Arnold W, Ruf T, et al. . Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol. (2018) 14:265–84. 10.1038/nrneph.2017.169
    1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. (2013) 153:1194–217. 10.1016/j.cell.2013.05.039
    1. Shiels PG, Buchanan S, Selman C, Stenvinkel P. Allostatic load and ageing: linking the microbiome and nutrition with age-related health. Biochem Soc Trans. (2019) 47:1165–72. 10.1042/BST20190110
    1. O'Toole PW, Shiels PG. The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. J Intern Med. (2020) Mar;287:271–82. 10.1111/joim.13021
    1. Kuro-o M. A potential link between phosphate and aging—Lessons from Klotho-deficient mice. Mech Ageing Dev. (2010) 131:270–5. 10.1016/j.mad.2010.02.008
    1. Kuro-o M. Phosphate and Klotho. Kidney Int. (2011) 79:S20–3. 10.1038/ki.2011.26
    1. Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone. (2017) 100:62–8. 10.1016/j.bone.2016.09.010
    1. Martin A, David V, Quarles LD. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol Rev. (2012) 92:131–55. 10.1152/physrev.00002.2011
    1. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. . Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. (2015) 22:1020–32. 10.1016/j.cmet.2015.09.002
    1. Grabner A, Schramm K, Silswal N, Hendrix M, Yanucil C, Czaya B, et al. . FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci Rep. (2017) 7:1993. 10.1038/s41598-017-02068-6
    1. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. . Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. (2016) 90:985–96. 10.1016/j.kint.2016.05.019
    1. Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol. (2008) 19:2342–50. 10.1681/ASN.2007121301
    1. Ebert T, Pawelzik S-C, Witasp A, Arefin S, Hobson S, Kublickiene K, et al. . Inflammation and premature ageing in chronic kidney disease. Toxins. (2020) 12:227. 10.3390/toxins12040227
    1. Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2–SGK1 signaling pathway. Bone. (2012) 51:621–8. 10.1016/j.bone.2012.05.015
    1. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. . The parathyroid is a target organ for FGF23 in rats. J Clin Invest. (2007) 117:4003–8. 10.1172/JCI32409
    1. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. . Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. (2006) 17:1305–15. 10.1681/ASN.2005111185
    1. Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, et al. . Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J. (2005) 390:325–31. 10.1042/BJ20041799
    1. Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, et al. . Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone. (2011) 49:636–43. 10.1016/j.bone.2011.06.025
    1. Quinn SJ, Thomsen ARB, Pang JL, Kantham L, Bräuner-Osborne H, Pollak M, et al. . Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol-Endocrinol Metab. (2013) 304:E310–20. 10.1152/ajpendo.00460.2012
    1. Rodriguez-Ortiz ME, Lopez I, Muñoz-Castañeda JR, Martinez-Moreno JM, Ramírez AP, Pineda C, et al. . Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. (2012) 23:1190–7. 10.1681/ASN.2011101006
    1. Shanahan CM. Mechanisms of vascular calcification in CKD—evidence for premature ageing? Nat Rev Nephrol. (2013) 9:661–670. 10.1038/nrneph.2013.176
    1. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. In Razzaque MS. editor. Contributions to Nephrology. Basel: S. Karger AG; (2013). p. 47–63. Available online at: (accessed June 9, 2020).
    1. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. (2009) 75:890–7. 10.1038/ki.2008.644
    1. Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, et al. . Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. (2011) 22:124–36. 10.1681/ASN.2009121311
    1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. . Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE. (2016) 11:e0158765. 10.1371/journal.pone.0158765
    1. Luyckx VA, Cherney DZI, Bello AK. Preventing CKD in developed countries. Kidney Int Rep. (2020) 5:263–77. 10.1016/j.ekir.2019.12.003
    1. Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol. (2014) 10:732–42. 10.1038/nrneph.2014.185
    1. Carracedo M, Artiach G, Witasp A, Clària J, Carlström M, Laguna-Fernandez A, et al. . The G-protein coupled receptor ChemR23 determines smooth muscle cell phenotypic switching to enhance high phosphate-induced vascular calcification. Cardiovasc Res. (2019) 115:1557–66. 10.1093/cvr/cvy316
    1. Abbasian N, Burton JO, Herbert KE, Tregunna B-E, Brown JR, Ghaderi-Najafabadi M, et al. . Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol. (2015) 26:2152–62. 10.1681/ASN.2014070642
    1. Voelkl J, Tuffaha R, Luong TTD, Zickler D, Masyout J, Feger M, et al. . Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF- κ B. J Am Soc Nephrol. (2018) 29:1636–48. 10.1681/ASN.2017050492
    1. Glorieux G, Gryp T, Perna A. Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins. (2020) 12:245. 10.3390/toxins12040245
    1. Hobson S, Arefin S, Kublickiene K, Shiels P, Stenvinkel P. Senescent cells in early vascular ageing and bone disease of chronic kidney disease—a novel target for treatment. Toxins. (2019) 11:82. 10.3390/toxins11020082
    1. Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, et al. . Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol-Ren Physiol. (2017) 313:F938–50. 10.1152/ajprenal.00256.2017
    1. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. (2018) 14:576–90. 10.1038/s41574-018-0059-4
    1. Goligorsky MS. Chronic kidney disease. Am J Pathol. (2020) 190:1164–71. 10.1016/j.ajpath.2020.01.016
    1. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. (2018) 18:309–24. 10.1038/nri.2017.142
    1. Osorio FG, Soria-Valles C, Santiago-Fernández O, Freije JMP, López-Otín C. NF-κB signaling as a driver of ageing. in International Review of Cell and Molecular Biology. Elsevier; (2016) p. 133–74. Available online at: (accessed June 9, 2020).
    1. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease: mechanisms of cardiovascular ageing. J Physiol. (2016) 594:2061–73. 10.1113/JP270538
    1. Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. . The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. (2015) 349:aaa5612. 10.1126/science.aaa5612
    1. Carracedo J, Alique M, Vida C, Bodega G, Ceprián N, Morales E, et al. . Mechanisms of cardiovascular disorders in patients with chronic kidney disease: a process related to accelerated senescence. Front Cell Dev Biol. (2020) 8:185. 10.3389/fcell.2020.00185
    1. Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, et al. . Nrf2 in early vascular ageing: calcification, senescence and therapy. Clin Chim Acta. (2020) 505:108–18. 10.1016/j.cca.2020.02.026
    1. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. (2014) 25:657–70. 10.1681/ASN.2013080905
    1. Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol. (2014) 25:615–22. 10.1681/ASN.2013060597
    1. Muteliefu G, Shimizu H, Enomoto A, Nishijima F, Takahashi M, Niwa T. Indoxyl sulfate promotes vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A through oxidative stress. Am J Physiol Cell Physiol. (2012) 303:C126–34. 10.1152/ajpcell.00329.2011
    1. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. . The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. (2018) 28:337–52. 10.1016/j.cmet.2018.08.014
    1. Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol. (2016) 27:354–70. 10.1681/ASN.2014101047
    1. Liu WJ, Shen TT, Chen RH, Wu H-L, Wang YJ, Deng JK, et al. . Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem. (2015) 290:20499–510. 10.1074/jbc.M115.666354
    1. Shi M, Yang S, Zhu X, Sun D, Sun D, Jiang X, et al. . The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal. (2019) 62:109334. 10.1016/j.cellsig.2019.05.019
    1. Carrero JJ, Stenvinkel P, Fellström B, Qureshi AR, Lamb K, Heimbürger O, et al. . Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med. (2008) 263:302–12. 10.1111/j.1365-2796.2007.01890.x
    1. Morii K, Yamasaki S, Doi S, Irifuku T, Sasaki K, Doi T, et al. . MicroRNA-200c regulates KLOTHO expression in human kidney cells under oxidative stress. PLoS ONE. (2019) 14:e0218468. 10.1371/journal.pone.0218468
    1. Yin S, Zhang Q, Yang J, Lin W, Li Y, Chen F, et al. . TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis. Biochim Biophys Acta BBA Mol Cell Res. (2017) 1864:1207–16. 10.1016/j.bbamcr.2017.03.002
    1. Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, et al. . The systemic nature of CKD. Nat Rev Nephrol. (2017) 13:344–58. 10.1038/nrneph.2017.52
    1. Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, et al. . Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. (2004) 110:1148–55. 10.1161/01.CIR.0000139854.74847.99
    1. Fernandez-Fernandez B, Izquierdo MC, Valiño-Rivas L, Nastou D, Sanz AB, Ortiz A, et al. . Albumin downregulates Klotho in tubular cells. Nephrol Dial Transplant. (2018) 33:1712–22. 10.1093/ndt/gfx376
    1. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, et al. . The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol. (2011) 22:1315–25. 10.1681/ASN.2010101073
    1. Thurston RD, Larmonier CB, Majewski PM, Ramalingam R, Midura-Kiela M, Laubitz D, et al. . Tumor necrosis factor and interferon-γ down-regulate Klotho in mice with colitis. Gastroenterology. (2010) 138:1384–94.e2. 10.1053/j.gastro.2009.12.002
    1. Sanchez-Niño MD, Fernandez-Fernandez B, Ortiz A. Klotho, the elusive kidney-derived anti-ageing factor. Clin Kidney J. (2020) 13:125–7. 10.1093/ckj/sfz125
    1. Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai J, et al. . In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. (2016) 90:348–62. 10.1016/j.kint.2016.04.009
    1. Hruska KA, Lanske B, Moe OW. Crosstalk between kidney and bone – bench to bedside. Bone. (2017) 100:1–3. 10.1016/j.bone.2017.03.046
    1. Razzaque MS. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol. (2009) 5:611–9. 10.1038/nrendo.2009.196
    1. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke H-D, Choukroun G, et al. . FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int. (2012) 23:2017–25. 10.1007/s00198-011-1838-0
    1. Smith ER, Holt SG, Hewitson TD. αKlotho–FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci. (2019) 76:4705–24. 10.1007/s00018-019-03241-y
    1. Kuro-o M. Klotho and endocrine fibroblast growth factors: markers of chronic kidney disease progression and cardiovascular complications? Nephrol Dial Transplant. (2019) 34:15–21. 10.1093/ndt/gfy126
    1. Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int. (2020) 97:466–76. 10.1016/j.kint.2019.10.032
    1. Chen C-D, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, et al. . The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci. (2013) 33:1927–39. 10.1523/JNEUROSCI.2080-12.2013
    1. Viggiano D, Wagner CA, Martino G, Nedergaard M, Zoccali C, Unwin R, et al. . Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. (2020) 16:452–69. 10.1038/s41581-020-0266-9
    1. Bobot M, Thomas L, Moyon A, Fernandez S, McKay N, Balasse L, et al. . Uremic toxic blood-brain barrier disruption mediated by AhR activation leads to cognitive impairment during experimental renal dysfunction. J Am Soc Nephrol. (2020) 31:1509–21. 10.1681/ASN.2019070728
    1. Zhou X, Chen K, Lei H, Sun Z. Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemotactic protein-1/CC chemokine receptor 2–mediated inflammation. J Am Soc Nephrol. (2015) 26:121–32. 10.1681/ASN.2013101033
    1. Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, et al. . Klotho gene in human salt-sensitive hypertension. Clin J Am Soc Nephrol. (2020) 15:375–83. 10.2215/CJN.08620719
    1. Sun C-Y, Chang S-C, Wu M-S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. (2012) 81:640–50. 10.1038/ki.2011.445
    1. Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho prevents translocation of NFκB. In: Vitam Horm. (2016) 101:119–50. 10.1016/bs.vh.2016.02.005
    1. Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, et al. . Klotho suppresses TNF-α-induced expression of adhesion molecules in the endothelium and attenuates NF-κB activation. Endocrine. (2009) 35:341–6. 10.1007/s12020-009-9181-3
    1. Fujihara CK, Antunes GR, Mattar AL, Malheiros DMAC, Vieira JM, Zatz R. Chronic inhibition of nuclear factor-κB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol-Ren Physiol. (2007) 292:F92–9. 10.1152/ajprenal.00184.2006
    1. Ding X, Wang X, Xue W, Tian X, Li Y, Jiao F, et al. . Blockade of the nuclear factor Kappa B pathway prolonged islet allograft survival: blockade of the NF-KB pathway. Artif Organs. (2012) 36:E21–7. 10.1111/j.1525-1594.2011.01395.x
    1. Volpini RA, Costa RS, da Silva CGA, Coimbra TM. Inhibition of nuclear factor-κB activation attenuates tubulointerstitial nephritis induced by gentamicin. Nephron Physiol. (2004) 98:97–106. 10.1159/000081558
    1. Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, et al. . Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (Serine)536 phosphorylation. Diabetes. (2011) 60:1907–16. 10.2337/db10-1262
    1. Vervloet MG, Adema AY, Larsson TE, Massy ZA. The role of Klotho on vascular calcification and endothelial function in chronic kidney disease. Semin Nephrol. (2014) 34:578–85. 10.1016/j.semnephrol.2014.09.003
    1. Temmar M, Liabeuf S, Renard C, Czernichow S, Esper NE, Shahapuni I, et al. . Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J Hypertens. (2010) 28:163–9. 10.1097/HJH.0b013e328331b81e
    1. Leifheit-Nestler M, Richter B, Basaran M, Nespor J, Vogt I, Alesutan I, et al. . Impact of altered mineral metabolism on pathological cardiac remodeling in elevated fibroblast growth factor 23. Front Endocrinol. (2018) 9:333. 10.3389/fendo.2018.00333
    1. Zhao Y, Zhao M-M, Cai Y, Zheng M-F, Sun W-L, Zhang S-Y, et al. . Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int. (2015) 88:711–21. 10.1038/ki.2015.160
    1. Hamano T. Klotho upregulation by rapamycin protects against vascular disease in CKD. Kidney Int. (2015) 88:660–2. 10.1038/ki.2015.223
    1. Hum JM, O'Bryan LM, Tatiparthi AK, Cass TA, Clinkenbeard EL, Cramer MS, et al. . Chronic hyperphosphatemia and vascular calcification are reduced by stable delivery of soluble Klotho. J Am Soc Nephrol. (2017) 28:1162–74. 10.1681/ASN.2015111266
    1. Masuda H, Chikuda H, Suga T, Kawaguchi H, Kuro-o M. Regulation of multiple ageing-like phenotypes by inducible Klotho gene expression in Klotho mutant mice. Mech Ageing Dev. (2005) 126:1274–83. 10.1016/j.mad.2005.07.007
    1. Lin HY-H, Lee Y-L, Lin K-D, Chiu Y-W, Shin S-J, Hwang S-J, et al. . Association of renal elasticity and renal function progression in patients with chronic kidney disease evaluated by real-time ultrasound elastography. Sci Rep. (2017) 7:43303. 10.1038/srep43303
    1. Zhang H, Nair V, Saha J, Atkins KB, Hodgin JB, Saunders TL, et al. . Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. (2017) 92:909–21. 10.1016/j.kint.2017.03.027
    1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic idney disease. Lancet. (2017) 389:1238–52. 10.1016/S0140-6736(16)32064-5
    1. Sugiura H, Yoshida T, Shiohira S, Kohei J, Mitobe M, Kurosu H, et al. . Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol-Ren Physiol. (2012) 302:F1252–64. 10.1152/ajprenal.00294.2011
    1. Guan T, Gao B, Chen G, Chen X, Janssen M, Uttarwar L, et al. . Colchicine attenuates renal injury in a model of hypertensive chronic kidney disease. Am J Physiol-Ren Physiol. (2013) 305:F1466–76. 10.1152/ajprenal.00057.2013
    1. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. . Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. (2011) 286:8655–65. 10.1074/jbc.M110.174037
    1. Guan X, Nie L, He T, Yang K, Xiao T, Wang S, et al. . Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling: Klotho suppresses FGF2-induced renal fibrosis. J Pathol. (2014) 234:560–72. 10.1002/path.4420
    1. Hu MC, Kuro-o M, Moe OW. Renal and extrarenal actions of Klotho. Semin Nephrol. (2013) 33:118–29. 10.1016/j.semnephrol.2012.12.013
    1. Eckardt K-U, Coresh J, Devuyst O, Johnson RJ, Köttgen A, Levey AS, et al. . Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. (2013) 382:158–69. 10.1016/S0140-6736(13)60439-0
    1. Chen T-H, Kuro-o M, Chen C-H, Sue Y-M, Chen Y-C, Wu H-H, et al. . The secreted Klotho protein restores phosphate retention and suppresses accelerated aging in Klotho mutant mice. Eur J Pharmacol. (2013) 698:67–73. 10.1016/j.ejphar.2012.09.032
    1. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant. (2012) 27:2650–7. 10.1093/ndt/gfs160
    1. Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, et al. . Soluble α -Klotho serum levels in chronic kidney disease. Int J Endocrinol. (2015) 2015:1–8. 10.1155/2015/872193
    1. Tan S-J, Smith ER, Holt SG, Hewitson TD, Toussaint ND. Soluble Klotho may be a marker of phosphate reabsorption. Clin Kidney J. (2017) 10:397–404. 10.1093/ckj/sfw146
    1. Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, et al. . Severely reduced production of Klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. (2001) 280:1015–20. 10.1006/bbrc.2000.4226
    1. Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, et al. . Secreted Klotho and FGF23 in chronic kidney disease stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. (2013) 28:352–9. 10.1093/ndt/gfs460
    1. Fernández-Fernández B, Valiño-Rivas L, Sánchez-Niño MD, Ortiz A. Albuminuria downregulation of the anti-aging factor Klotho: the missing link potentially explaining the association of pathological albuminuria with premature death. Adv Ther. (2020) 37:62–72. 10.1007/s12325-019-01180-5
    1. Barker SL, Pastor J, Carranza D, Quiñones H, Griffith C, Goetz R, et al. . The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. (2015) 30:223–33. 10.1093/ndt/gfu291
    1. Heijboer AC, Blankenstein MA, Hoenderop J, de Borst MH, Vervloet MG, on behalf of the NIGRAM consortium . Laboratory aspects of circulating -Klotho. Nephrol Dial Transplant. (2013) 28:2283–7. 10.1093/ndt/gft236
    1. Hu MC. Klotho connects intermedin1–53 to suppression of vascular calcification in chronic kidney disease. Kidney Int. (2016) 89:534–7. 10.1016/j.kint.2015.12.036
    1. Takenaka T, Inoue T, Miyazaki T, Kobori H, Nishiyama A, Ishii N, et al. . Klotho suppresses the renin-angiotensin system in adriamycin nephropathy. Nephrol Dial Transplant. (2016) 32:791–800. 10.1093/ndt/gfw340
    1. Hu M-C, Shi M, Zhang J, Quiñones H, Kuro-o M, Moe OW. Klotho deficiency is an early biomarker of renal ischemia–reperfusion injury and its replacement is protective. Kidney Int. (2010) 78:1240–51. 10.1038/ki.2010.328
    1. Cheikhi A, Barchowsky A, Sahu A, Shinde SN, Pius A, Clemens ZJ, et al. . Klotho: an elephant in aging research. J Gerontol Ser A. (2019) 74:1031–42. 10.1093/gerona/glz061
    1. Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, et al. . Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA. (2007) 104:2331–6. 10.1073/pnas.0611079104
    1. Qiao X, Rao P, Zhang Y, Liu L, Pang M, Wang H, et al. Redirecting TGF- β signaling through the β-Catenin/Foxo complex prevents kidney fibrosis. J Am Soc Nephrol. (2018) 29:557–70. 10.1681/ASN.2016121362
    1. Chen J, Zhang X, Zhang H, Liu T, Zhang H, Teng J, et al. . Indoxyl sulfate enhance the hypermethylation of Klotho and promote the process of vascular calcification in chronic kidney disease. Int J Biol Sci. (2016) 12:1236–46. 10.7150/ijbs.15195
    1. Azuma M, Koyama D, Kikuchi J, Yoshizawa H, Thasinas D, Shiizaki K, et al. . Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. (2012) 26:4264–74. 10.1096/fj.12-211631
    1. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, et al. . Klotho is a target gene of PPAR-γ. Kidney Int. (2008) 74:732–9. 10.1038/ki.2008.244
    1. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, et al. . Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. (2009) 119:524–30. 10.1172/JCI36703
    1. Yoon HE, Ghee JY, Piao S, Song J-H, Han DH, Kim S, et al. . Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. (2011) 26:800–13. 10.1093/ndt/gfq537
    1. Zhou Q, Lin S, Tang R, Veeraragoo P, Peng W, Wu R. Role of fosinopril and valsartan on Klotho gene expression induced by angiotensin ii in rat renal tubular epithelial cells. Kidney Blood Press Res. (2010) 33:186–92. 10.1159/000316703
    1. Forster RE, Jurutka PW, Hsieh J-C, Haussler CA, Lowmiller CL, Kaneko I, et al. . Vitamin D receptor controls expression of the anti-aging Klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. (2011) 414:557–62. 10.1016/j.bbrc.2011.09.117
    1. Ritter CS, Zhang S, Delmez J, Finch JL, Slatopolsky E. Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid, and aorta of uremic rats. Kidney Int. (2015) 87:1141–52. 10.1038/ki.2015.22
    1. Chang JR, Guo J, Wang Y, Hou YL, Lu WW, Zhang JS, et al. . Intermedin1–53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney Int. (2016) 89:586–600. 10.1016/j.kint.2015.12.029
    1. Mencke R, Olauson H, Hillebrands J-L. Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev. (2017) 121:85–100. 10.1016/j.addr.2017.07.009
    1. Wu H, Humphreys BD. The promise of single-cell RNA sequencing for kidney disease investigation. Kidney Int. (2017) 92:1334–42. 10.1016/j.kint.2017.06.033
    1. Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD, Portale AA, et al. . A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis: efficacy of burosumab in adults with XLH. J Bone Miner Res. (2018) 33:1383–93. 10.1002/jbmr.3475
    1. Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, et al. . Burosumab therapy in children with X-linked hypophosphatemia. N Engl J Med. (2018) 378:1987–98. 10.1056/NEJMoa1714641
    1. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. . FGF23 neutralization improves chronic kidney disease–associated hyperparathyroidism yet increases mortality. J Clin Invest. (2012) 122:2543–53. 10.1172/JCI61405
    1. Castillo-Garzón MJ, Ruiz JR, Ortega FB, Gutiérrez Á. Anti-aging therapy through fitness enhancement. Clin Interv Aging. (2006) 1:213–20. 10.2147/ciia.2006.1.3.213
    1. Simpson RJ, Guy K. Coupling aging immunity with a sedentary lifestyle: has the damage already been done? – A mini-review. Gerontology. (2010) 56:449–58. 10.1159/000270905
    1. Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS ONE. (2010) 5:e13307. 10.1371/journal.pone.0013307
    1. Palmefors H, DuttaRoy S, Rundqvist B, Börjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis – a systematic review. Atherosclerosis. (2014) 235:150–61. 10.1016/j.atherosclerosis.2014.04.026
    1. Slentz CA, Tanner CJ, Bateman LA, Durheim MT, Huffman KM, Houmard JA, et al. . Effects of exercise training intensity on pancreatic -cell function. Diabetes Care. (2009) 32:1807–11. 10.2337/dc09-0032
    1. Crasto CL, Semba RD, Sun K, Cappola AR, Bandinelli S, Ferrucci L. Relationship of low-circulating “anti-aging” Klotho hormone with disability in activities of daily living among older community-dwelling adults. Rejuvenation Res. (2012) 15:295–301. 10.1089/rej.2011.1268
    1. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. . Regulation of oxidative stress by the anti-aging hormone Klotho. J Biol Chem. (2005) 280:38029–34. 10.1074/jbc.M509039200
    1. Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, et al. . Plasma Klotho and cardiovascular disease in adults: Klotho and cardiovascular disease. J Am Geriatr Soc. (2011) 59:1596–601. 10.1111/j.1532-5415.2011.03558.x
    1. Phelps M, Pettan-Brewer C, Ladiges W, Yablonka-Reuveni Z. Decline in muscle strength and running endurance in Klotho deficient C57BL/6 mice. Biogerontology. (2013) 14:729–39. 10.1007/s10522-013-9447-2
    1. Avin KG, Coen PM, Huang W, Stolz DB, Sowa GA, Dubé JJ, et al. . Skeletal muscle as a regulator of the longevity protein, Klotho. Front Physiol. (2014) 5:189. 10.3389/fphys.2014.00189
    1. Saghiv MS, Sira DB, Goldhammer E, Sagiv M. The effects of aerobic and anaerobic exercises on circulating soluble-Klotho and IGF-I in young and elderly adults and in CAD patients. J Circ Biomark. (2017) 6:184945441773338. 10.1177/1849454417733388
    1. Mostafidi E, Moeen A, Nasri H, Ghorbani Hagjo A, Ardalan M. Serum Klotho levels in trained athletes. NephroUrol Mon. (2016) 8:e30245. 10.5812/numonthly.30245
    1. Pako J, Barta I, Balogh Z, Kerti M, Drozdovszky O, Bikov A, et al. . Assessment of the anti-aging Klotho protein in patients with COPD undergoing pulmonary rehabilitation. COPD J Chronic Obstr Pulm Dis. (2017) 14:176–80. 10.1080/15412555.2016.1272563
    1. Shardell M, Semba RD, Rosano C, Kalyani RR, Bandinelli S, Chia CW, et al. . Plasma Klotho and cognitive decline in older adults: findings from the InCHIANTI study. J Gerontol A Biol Sci Med Sci. (2016) 71:677–82. 10.1093/gerona/glv140
    1. Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, et al. . Relationship of low plasma Klotho with poor grip strength in older community-dwelling adults: the InCHIANTI study. Eur J Appl Physiol. (2012) 112:1215–20. 10.1007/s00421-011-2072-3
    1. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. . A translocation causing increased -Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA. (2008) 105:3455–60. 10.1073/pnas.0712361105
    1. Adema AY, Vervloet MG, Blankenstein MA, Heijboer AC, on behalf of the NIGRAM Consortium . α-Klotho is unstable in human urine. Kidney Int. (2015) 88:1442–4. 10.1038/ki.2015.238
    1. Gregg LP, Hedayati SS. Management of traditional cardiovascular risk factors in CKD: what are the data? Am J Kidney Dis. (2018) 72:728–44. 10.1053/j.ajkd.2017.12.007
    1. McClelland R, Christensen K, Mohammed S, McGuinness D, Cooney J, Bakshi A, et al. . Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging. (2016) 8:1135–49. 10.18632/aging.100948
    1. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr. (2014) 99:320–7. 10.3945/ajcn.113.073148
    1. Yoo KD, Kang S, Choi Y, Yang SH, Heo NJ, Chin HJ, et al. . Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function. Am J Kidney Dis. (2016) 67:79–88. 10.1053/j.ajkd.2015.06.027
    1. Kawai M, Kinoshita S, Ozono K, Michigami T. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an α -Klotho–deficient model. J Am Soc Nephrol. (2016) 27:2810–24. 10.1681/ASN.2015040446
    1. Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A, et al. . Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol. (2012) 7:581–7. 10.2215/CJN.07640711
    1. Milovanova L, Fomin V, Moiseev S, Taranova M, Milovanov Y, Lysenko L, et al. . Effect of essential amino acid? etoanalogues and protein restriction diet on morphogenetic proteins (FGF-23 and? lotho) in 3b−4 stages chronic kidney disease patients: a randomized pilot study. Clin Exp Nephrol. (2018) 22:1351–9. 10.1007/s10157-018-1591-1
    1. Yoshikawa R, Yamamoto H, Nakahashi O, Kagawa T, Tajiri M, Nakao M, et al. . The age-related changes of dietary phosphate responsiveness in plasma 1,25-dihydroxyvitamin D levels and renal Cyp27b1 and Cyp24a1 gene expression is associated with renal α-Klotho gene expression in mice. J Clin Biochem Nutr. (2018) 62:68–74. 10.3164/jcbn.17-20
    1. Courbon G, Martinez-Calle M, David V. Simultaneous management of disordered phosphate and iron homeostasis to correct fibroblast growth factor 23 and associated outcomes in chronic kidney disease. Curr Opin Nephrol Hypertens. (2020) 29:359–66. 10.1097/MNH.0000000000000614
    1. Coppolino G, Nicotera R, Cernaro V, Calimeri S, Leonardi G, Cosentino S, et al. . Iron infusion and induced hypophosphatemia: the role of fibroblast growth factor-23. Ther Apher Dial. (2020) 24:258–64. 10.1111/1744-9987.13435
    1. Francis C, Courbon G, Gerber C, Neuburg S, Wang X, Dussold C, et al. . Ferric citrate reduces fibroblast growth factor 23 levels and improves renal and cardiac function in a mouse model of chronic kidney disease. Kidney Int. (2019) 96:1346–58. 10.1016/j.kint.2019.07.026
    1. ter Braake AD, Smit AE, Bos C, van Herwaarden AE, Alkema W, van Essen HW, et al. . Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int. (2020) 97:487–501. 10.1016/j.kint.2019.09.034
    1. Maguire D, Neytchev O, Talwar D, McMillan D, Shiels P. Telomere homeostasis: interplay with magnesium. Int J Mol Sci. (2018) 19:157. 10.3390/ijms19010157
    1. Pool LR, Kershaw KN, Gordon-Larsen P, Gutiérrez OM, Reis JP, Isakova T, et al. . Racial differences in the associations between food insecurity and fibroblast growth factor 23 in the coronary artery risk development in young adults study. J Ren Nutr. (2020). 10.1053/j.jrn.2020.01.020. [Epub ahead of print].
    1. Glosse P, Fajol A, Hirche F, Feger M, Voelkl J, Lang F, et al. . A high-fat diet stimulates fibroblast growth factor 23 formation in mice through TNFα upregulation. Nutr Diabetes. (2018) 8:36. 10.1038/s41387-018-0037-x
    1. Lin Y, Chen J, Sun Z. Antiaging gene Klotho deficiency promoted high-fat diet–induced arterial stiffening via inactivation of AMP-activated protein kinase. Hypertension. (2016) 67:564–73. 10.1161/HYPERTENSIONAHA.115.06825
    1. Trummer C, Schwetz V, Pandis M, Grübler MR, Verheyen N, Gaksch M, et al. . Effects of vitamin D supplementation on FGF23: a randomized-controlled trial. Eur J Nutr. (2019) 58:697–703. 10.1007/s00394-018-1672-7
    1. Charoenngam N, Rujirachun P, Holick MF, Ungprasert P. Oral vitamin D3 supplementation increases serum fibroblast growth factor 23 concentration in vitamin D-deficient patients: a systematic review and meta-analysis. Osteoporos Int. (2019) 30:2183–93. 10.1007/s00198-019-05102-7
    1. Jurado-Fasoli L, Amaro-Gahete FJ, De-la-O A, Gutiérrez Á, Castillo MJ. Alcohol consumption and S-Klotho plasma levels in sedentary healthy middle-aged adults: a cross sectional study. Drug Alcohol Depend. (2019) 194:107–11. 10.1016/j.drugalcdep.2018.09.024
    1. Hsu S-C, Huang S-M, Chen A, Sun C-Y, Lin S-H, Chen J-S, et al. . Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway. Int J Biochem Cell Biol. (2014) 53:361–71. 10.1016/j.biocel.2014.06.002
    1. Jurado-Fasoli L, Castillo MJ, Amaro-Gahete FJ. Dietary inflammatory index and s-Klotho plasma levels in middle-aged adults. Nutrients. (2020) 12:281. 10.3390/nu12020281
    1. Jurado-Fasoli L, Amaro-Gahete FJ, De-la-O A, Martinez-Tellez B, Ruiz JR, Gutiérrez Á, et al. . Adherence to the Mediterranean diet, dietary factors, and s-Klotho plasma levels in sedentary middle-aged adults. Exp Gerontol. (2019) 119:25–32. 10.1016/j.exger.2019.01.019
    1. Rouhani MH, Mortazavi Najafabadi M, Surkan PJ, Esmaillzadeh A, Feizi A, Azadbakht L. The impact of oat (Avena sativa) consumption on biomarkers of renal function in patients with chronic kidney disease: a parallel randomized clinical trial. Clin Nutr. (2018) 37:78–84. 10.1016/j.clnu.2016.11.022
    1. Mafra D, Esgalhado M, Borges NA, Cardozo LFMF, Stockler-Pinto MB, Craven H, et al. . Methyl donor nutrients in chronic kidney disease: impact on the epigenetic landscape. J Nutr. (2019) 149:372–80. 10.1093/jn/nxy289
    1. Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2–related factor 2—lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transplant. (2019) gfz120. 10.1093/ndt/gfz120
    1. Bora SA, Kennett MJ, Smith PB, Patterson AD, Cantorna MT. Regulation of vitamin D metabolism following disruption of the microbiota using broad spectrum antibiotics. J Nutr Biochem. (2018) 56:65–73. 10.1016/j.jnutbio.2018.01.011

Source: PubMed

3
Suscribir