Angiography-Based Fractional Flow Reserve: State of the Art

Alessandra Scoccia, Mariusz Tomaniak, Tara Neleman, Frederik T W Groenland, Annemieke C Ziedses des Plantes, Joost Daemen, Alessandra Scoccia, Mariusz Tomaniak, Tara Neleman, Frederik T W Groenland, Annemieke C Ziedses des Plantes, Joost Daemen

Abstract

Purpose of review: Three-dimensional quantitative coronary angiography-based methods of fractional flow reserve (FFR) derivation have emerged as an appealing alternative to conventional pressure-wire-based physiological lesion assessment and have the potential to further extend the use of physiology in general. Here, we summarize the current evidence related to angiography-based FFR and perspectives on future developments.

Recent findings: Growing evidence suggests good diagnostic performance of angiography-based FFR measurements, both in chronic and acute coronary syndromes, as well as in specific lesion subsets, such as long and calcified lesions, left main coronary stenosis, and bifurcations. More recently, promising results on the superiority of angiography-based FFR as compared to angiography-guided PCI have been published. Currently available angiography -FFR indices proved to be an excellent alternative to invasive pressure wire-based FFR. Dedicated prospective outcome data comparing these indices to routine guideline recommended PCI including the use of FFR are eagerly awaited.

Keywords: Angiography-based FFR; FFRangio; Functional lesion assessment; Percutaneous coronary intervention; Quantitative flow ratio; Vessel FFR.

Conflict of interest statement

Joost Daemen received institutional research support from Astra Zeneca, Abbott Vascular, Boston Scientific, Acist Medical, Medtronic, Pie Medical, ReCor Medical, and PulseCath. The authors declare that they have no conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Commercially available software for angiography-based FFR. *Data on file, unpublished data provided by CathWorks. (Photo permissions: FFRangio with permission from CathWorks; QFR with permission from Medis Medical Imaging Systems B.V.; vFFR with permission from Pie Medical Imaging B.V.; and caFFR with permission from RainMed Medical Technology Co., Ltd.)

References

    1. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001. doi: 10.1056/NEJMoa1205361.
    1. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van't Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–224. doi: 10.1056/NEJMoa0807611.
    1. Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36(45):3182–3188. doi: 10.1093/eurheartj/ehv452.
    1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. doi: 10.1093/eurheartj/ehy394.
    1. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(3):e4–e17.
    1. Pijls NH, Tonino PA. The crux of maximum hyperemia: the last remaining barrier for routine use of fractional flow reserve. JACC Cardiovasc Interv. 2011;4(10):1093–1095. doi: 10.1016/j.jcin.2011.08.007.
    1. Tebaldi M, Biscaglia S, Fineschi M, Musumeci G, Marchese A, Leone AM, et al. Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the nationwide Italian SICI-GISE cross-sectional ERIS study. JACC Cardiovasc Interv. 2018;11(15):1482–1491. doi: 10.1016/j.jcin.2018.04.037.
    1. Adjedj J, Xaplanteris P, Toth G, Ferrara A, Pellicano M, Ciccarelli G, et al. Visual and quantitative assessment of coronary stenoses at angiography versus fractional flow reserve: the impact of risk factors. Circ Cardiovasc Imaging. 2017;10(7).
    1. Park SJ, Kang SJ, Ahn JM, Shim EB, Kim YT, Yun SC, et al. Visual-functional mismatch between coronary angiography and fractional flow reserve. JACC Cardiovasc Interv. 2012;5(10):1029–1036. doi: 10.1016/j.jcin.2012.07.007.
    1. Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J. 2014;35(40):2831–2838. doi: 10.1093/eurheartj/ehu094.
    1. Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV, et al. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire - fractional flow reserve. EuroIntervention. 2014;10(5):574–583. doi: 10.4244/EIJY14M07_01.
    1. Pyxaras SA, Tu S, Barbato E, Barbati G, Di Serafino L, De Vroey F, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve. Am Heart J. 2013;166(6):1010–1018. doi: 10.1016/j.ahj.2013.08.016.
    1. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv. 2014;7(7):768–777. doi: 10.1016/j.jcin.2014.03.004.
    1. Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J. 2011;32(3):345–353. doi: 10.1093/eurheartj/ehq259.
    1. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res. 1978;43(2):242–253. doi: 10.1161/01.RES.43.2.242.
    1. Kirkeeide RL, Gould KL, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol. 1986;7(1):103–113. doi: 10.1016/S0735-1097(86)80266-2.
    1. Gould KL. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol. 1978;41(2):267–278. doi: 10.1016/0002-9149(78)90165-0.
    1. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation. 1982;66(5):930–937. doi: 10.1161/01.CIR.66.5.930.
    1. Young DF, Tsai FY. Flow characteristics in models of arterial stenosis. I. Steady flow. J Biomech. 1973;6(4):395–410. doi: 10.1016/0021-9290(73)90099-7.
    1. Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J. 2019;40(41):3421–3433. doi: 10.1093/eurheartj/ehz551.
    1. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94(8):1842–1849. doi: 10.1161/01.CIR.94.8.1842.
    1. Fearon WF, Achenbach S, Engstrom T, Assali A, Shlofmitz R, Jeremias A, et al. Accuracy of fractional flow reserve derived from coronary angiography. Circulation. 2019;139(4):477–484. doi: 10.1161/CIRCULATIONAHA.118.037350.
    1. Kornowski R, Lavi I, Pellicano M, Xaplanteris P, Vaknin-Assa H, Assali A, et al. Fractional flow reserve derived from routine coronary angiograms. J Am Coll Cardiol. 2016;68(20):2235–2237. doi: 10.1016/j.jacc.2016.08.051.
    1. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv. 2016;9(19):2024–2035. doi: 10.1016/j.jcin.2016.07.013.
    1. Westra J, Andersen BK, Campo G, Matsuo H, Koltowski L, Eftekhari A, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan study. J Am Heart Assoc. 2018;7(14).
    1. •• Xu B, Tu S, Song L, Jin Z, Yu B, Fu G, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet. 2021. This is the first large head-to-head outcome study to demonstrated better clinical outcomes of QFR-guided PCI as compared with angiography guided PCI at one year follow-up.
    1. Masdjedi K, van Zandvoort LJC, Balbi MM, Gijsen FJH, Ligthart JMR, Rutten MCM, et al. Validation of a three-dimensional quantitative coronary angiography-based software to calculate fractional flow reserve: the FAST study. EuroIntervention. 2020;16(7):591–599. doi: 10.4244/EIJ-D-19-00466.
    1. Li J, Gong Y, Wang W, Yang Q, Liu B, Lu Y, et al. Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR. Cardiovasc Res. 2020;116(7):1349–1356. doi: 10.1093/cvr/cvz289.
    1. Masdjedi K, Tanaka N, Van Belle E, Porouchani S, Linke A, Woitek FJ, et al. Vessel fractional flow reserve (vFFR) for the assessment of stenosis severity: the FAST II study. EuroIntervention. 2021.
    1. Tröbs M, Achenbach S, Röther J, Redel T, Scheuering M, Winneberger D, et al. Comparison of fractional flow reserve based on computational fluid dynamics modeling using coronary angiographic vessel morphology versus invasively measured fractional flow reserve. Am J Cardiol. 2016;117(1):29–35. doi: 10.1016/j.amjcard.2015.10.008.
    1. Chang Y, Chen L, Westra J, Sun Z, Guan C, Zhang Y, et al. Reproducibility of quantitative flow ratio: an inter-core laboratory variability study. Cardiol J. 2020;27(3):230–237. doi: 10.5603/CJ.a2018.0105.
    1. van Rosendael AR, Koning G, Dimitriu-Leen AC, Smit JM, Montero-Cabezas JM, van der Kley F, et al. Accuracy and reproducibility of fast fractional flow reserve computation from invasive coronary angiography. Int J Cardiovasc Imaging. 2017;33(9):1305–1312. doi: 10.1007/s10554-017-1190-3.
    1. Westra J, Sejr-Hansen M, Kołtowski Ł, Mejía-Rentería H, Tu S, Kochman J, et al. Reproducibility of quantitative flow ratio: the QREP study. EuroIntervention. 2021.
    1. Pellicano M, Lavi I, De Bruyne B, Vaknin-Assa H, Assali A, Valtzer O, et al. Validation study of image-based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv. 2017;10(9).
    1. Witberg G, De Bruyne B, Fearon WF, Achenbach S, Engstrom T, Matsuo H, et al. Diagnostic performance of angiogram-derived fractional flow reserve: a pooled analysis of 5 prospective cohort studies. JACC Cardiovasc Interv. 2020;13(4):488–497. doi: 10.1016/j.jcin.2019.10.045.
    1. Omori H, Witberg G, Kawase Y, Tanigaki T, Okamoto S, Hirata T, et al. Angiogram based fractional flow reserve in patients with dual/triple vessel coronary artery disease. Int J Cardiol. 2019;283:17–22. doi: 10.1016/j.ijcard.2019.01.072.
    1. Kobayashi Y, Collet C, Achenbach S, Engstrøm T, Assali A, Shlofmitz RA, et al. Diagnostic performance of angiography-based fractional flow reserve by patient and lesion characteristics. EuroIntervention. 2021;17(4):e294–e300. doi: 10.4244/EIJ-D-19-00933.
    1. • Witberg G, Bental T, Levi A, Talmor-Barkan Y, Rotholz A, Tanigaki T, et al. Clinical Outcomes of FFRangio-guided treatment for coronary artery disease. JACC Cardiovasc Interv. 2022;15(4):468–70. Findings from this study provides 1 year clinical outcomes in patients where the treatment decision was based on the FFRangio results.
    1. Johnson NP, Matsumura M, Achenbach S, Engstrom T, Assali A, Jeremias A, et al. Angiography-derived fractional flow reserve versus invasive nonhyperemic pressure ratios. J Am Coll Cardiol. 2019;73(24):3232–3233. doi: 10.1016/j.jacc.2019.04.017.
    1. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol. 2017;70(25):3077–3087. doi: 10.1016/j.jacc.2017.10.035.
    1. Westra J, Tu S, Campo G, Qiao S, Matsuo H, Qu X, et al. Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: an individual patient-data meta-analysis. Catheter Cardiovasc Interv. 2019;94(5):693–701. doi: 10.1002/ccd.28283.
    1. Yazaki K, Otsuka M, Kataoka S, Kahata M, Kumagai A, Inoue K, et al. Applicability of 3-dimensional quantitative coronary angiography-derived computed fractional flow reserve for intermediate coronary stenosis. Circ J. 2017;81(7):988–992. doi: 10.1253/circj.CJ-16-1261.
    1. Smit JM, El Mahdiui M, van Rosendael AR, Jukema JW, Koning G, Reiber JHC, et al. Comparison of diagnostic performance of quantitative flow ratio in patients with versus without diabetes mellitus. Am J Cardiol. 2019;123(10):1722–1728. doi: 10.1016/j.amjcard.2019.02.035.
    1. Stähli BE, Erbay A, Steiner J, Klotsche J, Mochmann HC, Skurk C, et al. Comparison of resting distal to aortic coronary pressure with angiography-based quantitative flow ratio. Int J Cardiol. 2019;279:12–17. doi: 10.1016/j.ijcard.2018.11.093.
    1. Watarai M, Otsuka M, Yazaki K, Inagaki Y, Kahata M, Kumagai A, et al. Applicability of quantitative flow ratio for rapid evaluation of intermediate coronary stenosis: comparison with instantaneous wave-free ratio in clinical practice. Int J Cardiovasc Imaging. 2019;35(11):1963–1969. doi: 10.1007/s10554-019-01656-z.
    1. Hwang D, Choi KH, Lee JM, Mejía-Rentería H, Kim J, Park J, et al. Diagnostic agreement of quantitative flow ratio with fractional flow reserve and instantaneous wave-free ratio. J Am Heart Assoc. 2019;8(8):e011605. doi: 10.1161/JAHA.118.011605.
    1. Kleczyński P, Dziewierz A, Rzeszutko Ł, Dudek D, Legutko J. Borderline coronary lesion assessment with quantitative flow ratio and its relation to the instantaneous wave-free ratio. Adv Med Sci. 2021;66(1):1–5. doi: 10.1016/j.advms.2020.10.001.
    1. Scarsini R, Fezzi S, Pesarini G, Del Sole PA, Venturi G, Mammone C, et al. Impact of physiologically diffuse versus focal pattern of coronary disease on quantitative flow reserve diagnostic accuracy. Catheter Cardiovasc Interv. 2022;99(3):736–745. doi: 10.1002/ccd.30007.
    1. Tebaldi M, Biscaglia S, Di Girolamo D, Erriquez A, Penzo C, Tumscitz C, et al. Angio-based index of microcirculatory resistance for the assessment of the coronary resistance: a proof of concept study. J Interv Cardiol. 2020;2020:8887369. doi: 10.1155/2020/8887369.
    1. De Maria GL, Scarsini R, Shanmuganathan M, Kotronias RA, Terentes-Printzios D, Borlotti A, et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int J Cardiovasc Imaging. 2020;36(8):1395–1406. doi: 10.1007/s10554-020-01831-7.
    1. Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376(19):1824–1834. doi: 10.1056/NEJMoa1700445.
    1. Neleman T, Masdjedi K, Van Zandvoort LJC, Tomaniak M, Ligthart JMR, Witberg KT, et al. Extended validation of novel 3D quantitative coronary angiography-based software to calculate vFFR: the FAST EXTEND study. JACC Cardiovasc Imaging. 2021;14(2):504–506. doi: 10.1016/j.jcmg.2020.08.006.
    1. Tomaniak M, Masdjedi K, van Zandvoort LJ, Neleman T, Tovar Forero MN, Vermaire A, et al. Correlation between 3D-QCA based FFR and quantitative lumen assessment by IVUS for left main coronary artery stenoses. Catheter Cardiovasc Interv. 2021;97(4):E495–E501. doi: 10.1002/ccd.29151.
    1. Ai H, Feng Y, Gong Y, Zheng B, Jin Q, Zhang HP, et al. Coronary angiography-derived index of microvascular resistance. Front Physiol. 2020;11:605356. doi: 10.3389/fphys.2020.605356.
    1. Jin C, Ramasamy A, Safi H, Kilic Y, Tufaro V, Bajaj R, et al. Diagnostic accuracy of quantitative flow ratio (QFR) and vessel fractional flow reserve (vFFR) estimated retrospectively by conventional radiation saving X-ray angiography. Int J Cardiovasc Imaging. 2021;37(5):1491–1501. doi: 10.1007/s10554-020-02133-8.
    1. Jeremias A, Davies JE, Maehara A, Matsumura M, Schneider J, Tang K, et al. Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary intervention: the DEFINE PCI study. JACC Cardiovasc Interv. 2019;12(20):1991–2001. doi: 10.1016/j.jcin.2019.05.054.
    1. Rimac G, Fearon WF, De Bruyne B, Ikeno F, Matsuo H, Piroth Z, et al. Clinical value of post-percutaneous coronary intervention fractional flow reserve value: a systematic review and meta-analysis. Am Heart J. 2017;183:1–9. doi: 10.1016/j.ahj.2016.10.005.
    1. Kasula S, Agarwal SK, Hacioglu Y, Pothineni NK, Bhatti S, Ahmed Z, et al. Clinical and prognostic value of poststenting fractional flow reserve in acute coronary syndromes. Heart. 2016;102(24):1988–1994. doi: 10.1136/heartjnl-2016-309422.
    1. Wolfrum M, Fahrni G, de Maria GL, Knapp G, Curzen N, Kharbanda RK, et al. Impact of impaired fractional flow reserve after coronary interventions on outcomes: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16(1):177. doi: 10.1186/s12872-016-0355-7.
    1. Agarwal SK, Kasula S, Hacioglu Y, Ahmed Z, Uretsky BF, Hakeem A. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes. JACC Cardiovasc Interv. 2016;9(10):1022–1031. doi: 10.1016/j.jcin.2016.01.046.
    1. Leesar MA, Satran A, Yalamanchili V, Helmy T, Abdul-Waheed M, Wongpraparut N. The impact of fractional flow reserve measurement on clinical outcomes after transradial coronary stenting. EuroIntervention. 2011;7(8):917–923. doi: 10.4244/EIJV7I8A145.
    1. Pijls NH, Klauss V, Siebert U, Powers E, Takazawa K, Fearon WF, et al. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation. 2002;105(25):2950–2954. doi: 10.1161/01.CIR.0000020547.92091.76.
    1. Hwang D, Lee JM, Lee HJ, Kim SH, Nam CW, Hahn JY, et al. Influence of target vessel on prognostic relevance of fractional flow reserve after coronary stenting. EuroIntervention. 2019;15(5):457–464. doi: 10.4244/EIJ-D-18-00913.
    1. Lee JM, Hwang D, Choi KH, Rhee TM, Park J, Kim HY, et al. Prognostic implications of relative increase and final fractional flow reserve in patients with stent implantation. JACC Cardiovasc Interv. 2018;11(20):2099–2109. doi: 10.1016/j.jcin.2018.07.031.
    1. Piroth Z, Toth GG, Tonino PAL, Barbato E, Aghlmandi S, Curzen N, et al. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circ Cardiovasc Interv. 2017;10(8).
    1. van Zandvoort LJC, Masdjedi K, Witberg K, Ligthart J, Tovar Forero MN, Diletti R, et al. Explanation of postprocedural fractional flow reserve below 0.85. Circ Cardiovasc Interv. 2019;12(2):e007030. doi: 10.1161/CIRCINTERVENTIONS.118.007030.
    1. Neleman T, Zandvoort L, Forero MT, Masdjedi K, Ligthart J, Witberg K, et al. TCT-173 FFR-guided PCI optimization directed by high-definition intravascular ultrasound: baseline findings from the FFR REACT trial. J Am Coll Cardiol. 2021;78(19_Supplement_S):B72–B72. doi: 10.1016/j.jacc.2021.09.1026.
    1. Masdjedi K, van Zandvoort LJ, Balbi MM, Nuis RJ, Wilschut J, Diletti R, et al. Validation of novel 3-dimensional quantitative coronary angiography based software to calculate fractional flow reserve post stenting. Catheter Cardiovasc Interv. 2020.
    1. • Biscaglia S, Tebaldi M, Brugaletta S, Cerrato E, Erriquez A, Passarini G, et al. Prognostic value of QFR measured immediately after successful stent implantation: the international multicenter prospective HAWKEYE study. JACC Cardiovasc Interv. 2019;12(20):2079–88. Findings from this study showed that lower values of QFR after complete and successful revascularization predict subsequent adverse events.
    1. Kogame N, Takahashi K, Tomaniak M, Chichareon P, Modolo R, Chang CC, et al. Clinical implication of quantitative flow ratio after percutaneous coronary intervention for 3-vessel disease. JACC Cardiovasc Interv. 2019;12(20):2064–2075. doi: 10.1016/j.jcin.2019.08.009.
    1. Masdjedi K, Ligthart J, Witberg K, Tomaniak M, Zandvoort L, Diletti R, et al. TCT-110 The prognostic value of angiography-based vessel-ffr after successful percutaneous coronary intervention: the FAST outcome study. J Am Coll Cardiol. 2019;74(13_Supplement):B110–B110. doi: 10.1016/j.jacc.2019.08.156.
    1. Biscaglia S, Uretsky BF, Tebaldi M, Erriquez A, Brugaletta S, Cerrato E, et al. Angio-based fractional flow reserve, functional pattern of coronary artery disease, and prediction of percutaneous coronary intervention result: a proof-of-concept study. Cardiovasc Drugs Ther. 2021.
    1. Shin D, Dai N, Lee SH, Choi KH, Lefieux A, Molony D, et al. Physiological distribution and local severity of coronary artery disease and outcomes after percutaneous coronary intervention. JACC Cardiovasc Interv. 2021;14(16):1771–1785. doi: 10.1016/j.jcin.2021.06.013.
    1. Feldmann K, Cami E, Safian RD. Planning percutaneous coronary interventions using computed tomography angiography and fractional flow reserve-derived from computed tomography: a state-of-the-art review. Catheter Cardiovasc Interv. 2019;93(2):298–304. doi: 10.1002/ccd.27817.
    1. Rubimbura V, Guillon B, Fournier S, Amabile N, Chi Pan C, Combaret N, et al. Quantitative flow ratio virtual stenting and post stenting correlations to post stenting fractional flow reserve measurements from the DOCTORS (Does Optical Coherence Tomography Optimize Results of Stenting) study population. Catheter Cardiovasc Interv. 2020;96(6):1145–1153. doi: 10.1002/ccd.28615.
    1. Tomaniak M, Neleman T, Kucuk I, Masdjedi K, Zandvoort L, Kochman J, et al. TCT-301 diagnostic accuracy of angiography-based vessel fractional flow reserve (vFFR) virtual stenting. J Am Coll Cardiol. 2021;78(19_Supplement_S):B124–B124. doi: 10.1016/j.jacc.2021.09.1154.
    1. Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, et al. Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction. Circ J. 2018;82(3):807–814. doi: 10.1253/circj.CJ-17-0949.
    1. Erbay A, Penzel L, Abdelwahed YS, Klotsche J, Schatz AS, Steiner J, et al. Feasibility and diagnostic reliability of quantitative flow ratio in the assessment of non-culprit lesions in acute coronary syndrome. Int J Cardiovasc Imaging. 2021;37(6):1815–1823. doi: 10.1007/s10554-021-02195-2.
    1. Lauri FM, Macaya F, Mejía-Rentería H, Goto S, Yeoh J, Nakayama M, et al. Angiography-derived functional assessment of non-culprit coronary stenoses in primary percutaneous coronary intervention. EuroIntervention. 2020;15(18):e1594–e1601. doi: 10.4244/EIJ-D-18-01165.
    1. Tebaldi M, Biscaglia S, Erriquez A, Penzo C, Tumscitz C, Scoccia A, et al. Comparison of quantitative flow ratio, Pd/Pa and diastolic hyperemia-free ratio versus fractional flow reserve in non-culprit lesion of patients with non ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv. 2021;98(6):1057–1065. doi: 10.1002/ccd.29380.
    1. Bär S, Kavaliauskaite R, Ueki Y, Otsuka T, Kelbæk H, Engstrøm T, et al. Quantitative flow ratio to predict nontarget vessel-related events at 5 years in patients with ST-segment-elevation myocardial infarction undergoing angiography-guided revascularization. J Am Heart Assoc. 2021;10(9):e019052. doi: 10.1161/JAHA.120.019052.
    1. Milzi A, Dettori R, Marx N, Reith S, Burgmaier M. Quantitative flow ratio (QFR) identifies functional relevance of non-culprit lesions in coronary angiographies of patients with acute myocardial infarction. Clin Res Cardiol. 2021;110(10):1659–1667. doi: 10.1007/s00392-021-01897-w.
    1. Sejr-Hansen M, Westra J, Thim T, Christiansen EH, Eftekhari A, Kristensen SD, et al. Quantitative flow ratio for immediate assessment of nonculprit lesions in patients with ST-segment elevation myocardial infarction-An iSTEMI substudy. Catheter Cardiovasc Interv. 2019;94(5):686–692. doi: 10.1002/ccd.28208.
    1. Liontou C, Mejía-Rentería H, Lauri FM, Goto S, Lee HJ, Nakayama M, et al. Quantitative flow ratio for functional evaluation of in-stent restenosis. EuroIntervention. 2021;17(5):e396–e398. doi: 10.4244/EIJ-D-18-00955.
    1. Saito Y, Cristea E, Bouras G, Abizaid A, Lutz M, Carrié D, et al. Long-term serial functional evaluation after implantation of the Fantom sirolimus-eluting bioresorbable coronary scaffold. Catheter Cardiovasc Interv. 2021;97(3):431–436. doi: 10.1002/ccd.28804.
    1. Sejr-Hansen M, Christiansen EH, Ahmad Y, Vendrik J, Westra J, Holm NR, et al. Performance of quantitative flow ratio in patients with aortic stenosis undergoing transcatheter aortic valve implantation. Catheter Cardiovasc Interv. 2022;99(1):68–73. doi: 10.1002/ccd.29518.

Source: PubMed

3
Suscribir