High-intensity interval training (HIT) for effective and time-efficient pre-surgical exercise interventions

Matthew Weston, Kathryn L Weston, James M Prentis, Chris P Snowden, Matthew Weston, Kathryn L Weston, James M Prentis, Chris P Snowden

Abstract

The advancement of perioperative medicine is leading to greater diversity in development of pre-surgical interventions, implemented to reduce patient surgical risk and enhance post-surgical recovery. Of these interventions, the prescription of pre-operative exercise training is gathering momentum as a realistic means for enhancing patient surgical outcome. Indeed, the general benefits of exercise training have the potential to pre-operatively optimise several pre-surgical risks factors, including cardiorespiratory function, frailty and cognitive function. Any exercise programme incorporated into the pre-operative pathway of care needs to be effective and time efficient in that any fitness gains are achievable in the limited period between the decision for surgery and operation (e.g. 4 weeks). Fortunately, there is a large volume of research describing effective and time-efficient exercise training programmes within the discipline of sports science. Accordingly, the objective of our commentary is to synthesise contemporary exercise training research, both from non-clinical and clinical populations, with the overarching aim of informing the development of effective and time-efficient pre-surgical exercise training programmes. The development of such exercise training programmes requires the careful consideration of several key principles, namely frequency, intensity, time, type and progression of exercise. Therefore, in light of more recent evidence demonstrating the effectiveness and time efficiency of high-intensity interval training-which involves brief bouts of intense exercise interspersed with longer recovery periods-the principles of exercise training programme design will be discussed mainly in the context of such high-intensity interval training programmes. Other issues pertinent to the development, implementation and evaluation of pre-operative exercise training programmes, such as individual exercise prescription, training session monitoring and potential barriers and risks to high-intensity exercise are also discussed. The evidence presented suggests that individually prescribed and supervised high-intensity interval training programmes, encompassing a variety of exercise modes represent an effective and safe means of exercise therapy prior to surgery.

Keywords: Exercise monitoring; HIT; Patient care; Pre-habilitation; Safety; Training programme.

References

    1. Adamson SB, Lorimer R, Cobley JN, Babraj JA. Extremely short-duration high‐intensity training substantially improves the physical function and self‐reported health status of elderly adults. J Am Geriatr Soc. 2014;62(7):1380–1381. doi: 10.1111/jgs.12916.
    1. American College of Sports Medicine . ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2013. pp. 162–179.
    1. Barnes KR, Hopkins WG, McGuigan MR, Kilding AE. Effects of different uphill interval-training programs on running economy and performance. Int J Sports Physiol Perform. 2013;8(6):639–647.
    1. Bellet RN, Adams L, Morris NR. The 6-minute walk test in outpatient cardiac rehabilitation: validity, reliability and responsiveness—a systematic review. Physiotherapy. 2012;98(4):277–286. doi: 10.1016/j.physio.2011.11.003.
    1. Bellg AJ, Borrelli B, Resnick B, Hecht J, Minicucci DS, Ory M, et al. Enhancing treatment fidelity in health behavior change studies: best practices and recommendations from the NIH behavior change consortium. Health Psychol. 2004;23(5):443–451. doi: 10.1037/0278-6133.23.5.443.
    1. Berryman N, Bherer L, Nadeau S, Lauzière S, Lehr L, Bobeuf F, et al. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults. Age. 2014;36:9710–9719. doi: 10.1007/s11357-014-9710-8.
    1. Bettelli G. Preoperative evaluation in geriatric surgery: comorbidity, functional status and pharmacological history. Minerva Anestesiol. 2011;77(6):637–646.
    1. Biddle SJ, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12(1):95. doi: 10.1186/s12966-015-0254-9.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Buchheit M. Should we be recommending repeated sprints to improve repeated-sprint performance? Sports Med. 2012;42:169–172. doi: 10.2165/11598230-000000000-00000.
    1. Buckley JP, Sim J, Eston RG. Reproducibility of ratings of perceived exertion soon after myocardial infarction: responses in the stress-testing clinic and the rehabilitation gymnasium. Ergonomics. 2009;52(4):421–427. doi: 10.1080/00140130802707691.
    1. Buckley S, Knapp K, Lackie A, Lewry C, Horvey K, Benko C, et al. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl Physiol Nutr Metab. 2015;40:1157–1162. doi: 10.1139/apnm-2015-0238.
    1. Buffart LM, Newton RU, Chinapaw MJ, Taaffe DR, Spry NA, Denham JW, et al. The effect, moderators, and mediators of resistance and aerobic exercise on health-related quality of life in older long-term survivors of prostate cancer. Cancer. 2015;121:2821–2830. doi: 10.1002/cncr.29406.
    1. Burich R, Teljigović S, Boyle E, Sjogaard G. Aerobic training alone or combined with strength training affects fitness in elderly: randomized trial. Eur J Sports Sci. 2015. .
    1. Cadore EL, Izquierdo M. How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in the elderly: an update. Age (Dordr) 2013;35:2329–2344. doi: 10.1007/s11357-012-9405-y.
    1. Cadore EL, Pinto RS, Bottaro M, Izquierdo M. Strength and endurance training prescription in healthy and frail elderly. Aging Dis. 2014;5:183–195. doi: 10.14336/AD.2014.0500183.
    1. Cantrell GS, Schilling BK, Paquette MR, Murlasits Z. Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur J Appl Physiol. 2014;114:763–771. doi: 10.1007/s00421-013-2811-8.
    1. Carli F, Charlebois P, Stein B, Feldman L, Zavorsky G, Kim D, et al. Randomized clinical trial of prehabilitation in colorectal surgery. Br J Surg. 2010;97(8):1187–1197. doi: 10.1002/bjs.7102.
    1. Carli F, Brown R, Kennepohl S. Prehabilitation to enhance postoperative recovery for an octogenarian following robotic-assisted hysterectomy with endometrial cancer. Can J Anaesth. 2012;59(8):779–784. doi: 10.1007/s12630-012-9734-4.
    1. Casla S, López-Tarruella S, Jerez Y, Marquez-Rodas I, Galvão DA, Newton RU, et al. Supervised physical exercise improves VO2max, quality of life, and health in early stage breast cancer patients: a randomized controlled trial. Breast Cancer Res Treat. 2015;153:371–382. doi: 10.1007/s10549-015-3541-x.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–131.
    1. Currie KD, Bailey KJ, Jung ME, McKelvie RS, MacDonald MJ. Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J Sci Med Sport. 2015;18(6):637–642. doi: 10.1016/j.jsams.2014.09.013.
    1. de Souza E, Tricoli V, Roschel H, Brum P, Bacurau AV, Ferreira JC, et al. Molecular adaptations to concurrent training. Int J Sports Med. 2013;34:207–213.
    1. Department of Health, Physical Activity, Health Improvement and Protection . Start active, stay active: a report on physical activity from the four home countries’ chief medical officers. 2011.
    1. Dishman RK. Compliance/adherence in health-related exercise. Health Psychol. 1982;1(3):237. doi: 10.1037/0278-6133.1.3.237.
    1. Dumas JE, Lynch AM, Laughlin JE, Phillips Smith E, Prinz RJ. Promoting intervention fidelity: conceptual issues, methods, and preliminary results from the early alliance prevention trial. Am J Prev Med. 2001;20(1):38–47. doi: 10.1016/S0749-3797(00)00272-5.
    1. Durrand J, Batterham A, Danjoux G. Pre‐habilitation (i): aggregation of marginal gains. Anaesthesia. 2014;69(5):403–406. doi: 10.1111/anae.12666.
    1. Englesbe MJ, Terjimanian MN, Lee JS, Sheetz KH, Harbaugh CM, Hussain A, et al. Morphometric age and surgical risk. J Am Coll Surg. 2013;216(5):976–985. doi: 10.1016/j.jamcollsurg.2013.01.052.
    1. Eston RG, Williams JG. Reliability of ratings of perceived effort regulation of exercise intensity. Br J Sports Med. 1988;22(4):153–155. doi: 10.1136/bjsm.22.4.153.
    1. Findlay GP. Knowing the risk. A review of the peri-operative care of surgical patients: a report by the national confidential enquiry into patient outcome and death. 2011.
    1. Fox EL, Bartels RL, Billings CE, Mathews DK, Bason R, Webb WM. Intensity and distance of interval training programs and changes in aerobic power. Med Sci Sports. 1973;5(1):18–22.
    1. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44:743–762. doi: 10.1007/s40279-014-0162-1.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, et al. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS One. 2014;9(11) doi: 10.1371/journal.pone.0111489.
    1. Gillis C, Li C, Lee L, Awasthi R, Augustin B, Gamsa A, et al. Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology. 2014;121(5):937–947. doi: 10.1097/ALN.0000000000000393.
    1. Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2014;44(2):269–279. doi: 10.1007/s40279-013-0115-0.
    1. Heinrich KM, Patel PM, O’Neal JL, Heinrich BS. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. 2014;14:789. doi: 10.1186/1471-2458-14-789.
    1. Hickson RC, Foster C, Pollock ML, Galassi TM, Rich S. Reduced training intensities and loss of aerobic power, endurance, and cardiac growth. J Appl Physiol. 1985;58(2):492–499.
    1. Horner S, Rew L, Torres R. Enhancing intervention fidelity: a means of strengthening study impact. J Spec Pediatr Nurs. 2006;11(2):80–89. doi: 10.1111/j.1744-6155.2006.00050.x.
    1. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6):S364–S369. doi: 10.1097/00005768-200106001-00005.
    1. Hruda KV, Hicks AL, McCartney N. Training for muscle power in older adults: effects on functional abilities. Can J App Physiol. 2003;28(2):178–189. doi: 10.1139/h03-014.
    1. Iepsen UW, Jorgensen KJ, Ringbaek T, Hansen H, Skrubbeltrang C, Lange P. A combination of resistance and endurance training increases leg muscle strength in COPD: an evidence-based recommendation based on systematic review with meta-analyses. Chron Respir Dis. 2015;12(2):132–145. doi: 10.1177/1479972315575318.
    1. Ilarraza H, Myers J, Kottman W, Rickli H, Dubach P. An evaluation of training responses using self-regulation in a residential rehabilitation program. J Cardiopulm Rehabil. 2004;24:27–33. doi: 10.1097/00008483-200401000-00006.
    1. Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):1042–1047. doi: 10.1249/01.MSS.0000128199.23901.2F.
    1. Impellizzeri FM, Borg E, Coutts AJ. Intersubjective comparisons are possible with an accurate use of the Borg CR scales. Int J Sports Physiol Perform. 2011;6(1):2–4.
    1. Jack S, West M, Grocott MPW. Perioperative exercise training in elderly subjects. Best Pract Res Clin Anaesthesiol. 2011;25(3):461–472. doi: 10.1016/j.bpa.2011.07.003.
    1. Jefferis BJ, Sartini C, Lee I, Choi M, Amuzu A, Gutierrez C, et al. Adherence to physical activity guidelines in older adults, using objectively measured physical activity in a population-based study. BMC Public Health. 2014;14:382. doi: 10.1186/1471-2458-14-382.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028.
    1. Jones LW, Eves ND, Peppercorn J. Pre-exercise screening and prescription guidelines for cancer patients. Lancet Oncol. 2010;11:914–916. doi: 10.1016/S1470-2045(10)70184-4.
    1. Katula JA, Rejeski WJ, Marsh AP. Enhancing quality of life in older adults: a comparison of muscular strength and power training. Health Qual Life Outcomes. 2008;6:45. doi: 10.1186/1477-7525-6-45.
    1. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489–509. doi: 10.2165/11630910-000000000-00000.
    1. Levinger I, Shaw CS, Stepto NK, Cassar S, McAinch AJ, Cheetham C, et al. What doesn’t kill you makes you fitter: a systematic review of high-intensity interval exercise for patients with cardiovascular and metabolic diseases. Clin Med Insights Cardiol. 2015;9:53–63. doi: 10.4137/CMC.S26230.
    1. Liou K, Ho S, Fildes J, Ooi SY. High intensity interval versus moderate intensity continuous training in patients with coronary artery disease: a meta-analysis of physiological and clinical parameters. Heart Lung Circ. 2015
    1. Lunt H, Draper N, Marshall HC, Logan FJ, Hamlin MJ, Shearman JP, et al. High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. PLoS One. 2014;9(1) doi: 10.1371/journal.pone.0083256.
    1. Macpherson TW, Weston M. The effect of low-volume sprint interval training (SIT) on the development and subsequent maintenance of aerobic fitness in soccer players. Int J Sports Physiol Perform. 2015;10(3):332–338. doi: 10.1123/ijspp.2014-0075.
    1. Makary MA, Segev DL, Pronovost PJ, Syin D, Bandeen-Roche K, Patel P, et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010;210(6):901–908. doi: 10.1016/j.jamcollsurg.2010.01.028.
    1. Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112(7):2767–2775. doi: 10.1007/s00421-011-2254-z.
    1. Milanović Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45:1469–1481. doi: 10.1007/s40279-015-0365-0.
    1. Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running. Sports Med. 2009;39:179–206. doi: 10.2165/00007256-200939030-00002.
    1. Moyes LH, McCaffer CJ, Carter RC, Fullarton GM, Mackay CK, Forshaw MJ. Cardiopulmonary exercise testing as a predictor of complications in oesophagogastric cancer surgery. Ann R Coll Surg Engl. 2013;95(2):125–130. doi: 10.1308/rcsann.2013.95.2.125.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–1445. doi: 10.1249/mss.0b013e3180616aa2.
    1. O’Doherty AF, West M, Jack S, Grocott MPW. Preoperative aerobic exercise training in elective intra-cavity surgery: a systematic review. Br J Anaesth. 2013;110:679–689. doi: 10.1093/bja/aes514.
    1. Older P, Hall A. Clinical review: how to identify high-risk surgical patients. Crit Care. 2004;8(5):369–372. doi: 10.1186/cc2848.
    1. Osawa Y, Azuma K, Tabata S, Katsukawa F, Ishida H, Oguma Y, et al. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access J Sports Med. 2014;5:257–265. doi: 10.2147/OAJSM.S68932.
    1. Partridge JS, Harari D, Dhesi JK. Frailty in the older surgical patient: a review. Age Ageing. 2012;41(2):142–147. doi: 10.1093/ageing/afr182.
    1. Pattyn N, Coeckelberghs E, Buys R, Cornelissen VA, Vanhees L. Aerobic interval training vs. moderate continuous training in coronary artery disease patients: a systematic review and meta-analysis. Sports Med. 2014;44(5):687–700. doi: 10.1007/s40279-014-0158-x.
    1. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81. doi: 10.1186/cc4928.
    1. Pearse RM, Holt PJ, Grocott MP. Managing perioperative risk in patients undergoing elective non-cardiac surgery. BMJ. 2011;343:d5759. doi: 10.1136/bmj.d5759.
    1. Pouwels S, Willigendael EM, van Sambeek MRHM, Nienhuijs SW, Cuypers PWM, Teijink JAW. Beneficial effects of pre-operative exercise therapy in patients with an abdominal aortic aneurysm: a systematic review. Eur J Vasc Endovasc Surg. 2015;49(1):66–76. doi: 10.1016/j.ejvs.2014.10.008.
    1. Prentis JM, Trenell MI, Jones DJ, Lees T, Clarke M, Snowden CP. Submaximal exercise testing predicts perioperative hospitalization after aortic aneurysm repair. J Vasc Surg. 2012;56(6):1564–1570. doi: 10.1016/j.jvs.2012.05.097.
    1. Rodas G, Ventura JL, Cadefau JA, Cussó R, Parra J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol. 2000;82(5–6):480–486. doi: 10.1007/s004210000223.
    1. Ronnestad B, Hansen J, Vegge G, Tønnessen E, Slettaløkken G. Short intervals induce superior training adaptations compared with long intervals in cyclists—an effort‐matched approach. Scand J Med Sci Sports. 2014
    1. Rose DJ, Jones CJ, Lucchese N. Predicting the probability of falls in community-residing older adults using the 8-foot up-and-go: a new measure of functional mobility. J Aging Phys Act. 2002;10:466–475.
    1. Saxton A, Velanovich V. Preoperative frailty and quality of life as predictors of postoperative complications. Ann Surg. 2011;253(6):1223–1229. doi: 10.1097/SLA.0b013e318214bce7.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;1409–1426.
    1. Singh F, Newton RU, Galvão DA, Spry N, Baker MK. A systematic review of pre-surgical exercise intervention studies with cancer patients. Surg Oncol. 2013;22:92–104. doi: 10.1016/j.suronc.2013.01.004.
    1. Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta‐analysis. Scand J Med Sci Sports. 2013;23(6):e341–e352. doi: 10.1111/sms.12092.
    1. Snowden CP, Minto G. Exercise: the new premed. Br J Anaesth. 2015;114(2):186–189. doi: 10.1093/bja/aeu348.
    1. Snowden CP, Prentis JM, Anderson HL, Roberts DR, Randles D, Renton M, et al. Submaximal cardiopulmonary exercise testing predicts complications and hospital length of stay in patients undergoing major elective surgery. Ann Surg. 2010;251(3):535–541. doi: 10.1097/SLA.0b013e3181cf811d.
    1. Snowden CP, Prentis J, Jacques B, Anderson H, Manas D, Jones D, et al. Cardiorespiratory fitness predicts mortality and hospital length of stay after major elective surgery in older people. Ann Surg. 2013;257(6):999–1004. doi: 10.1097/SLA.0b013e31828dbac2.
    1. Sparling PB, Howard BJ, Dunstan DW, Owen N. Recommendations for physical activity in older adults. BMJ. 2015
    1. Tang LH, Zwisler A-D, Taylor RS, Doherty P, Zangger G, Berg SK, et al. Self-rating level of perceived exertion for guiding exercise intensity during a 12-week cardiac rehabilitation programme and the influence of heart rate reducing medication. J Sci Med Sport. 2015
    1. Taylor KL, Weston M, Batterham AM. Evaluating intervention fidelity: an example from a high-intensity interval training study. PLoS One. 2015;10(4) doi: 10.1371/journal.pone.0125166.
    1. Tew GA, Weston M, Kothmann E, Batterham AM, Gray J, Kerr K, et al. High-intensity interval exercise training before abdominal aortic aneurysm repair (HIT-AAA): protocol for a randomised controlled feasibility trial. BMJ Open. 2014;4(1):e004094. doi: 10.1136/bmjopen-2013-004094.
    1. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001. doi: 10.1097/00005768-200212000-00020.
    1. US Department of Health and Human Services . 2008 physical activity guidelines for Americans. 2008.
    1. Valkenet K, van de Port IG, Dronkers JJ, de Vries WR, Lindeman E, Backx FJ. The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil. 2011;25:99–111. doi: 10.1177/0269215510380830.
    1. West MA, Lythgoe D, Barben CP, Noble L, Kemp GJ, Jack S, et al. Cardiopulmonary exercise variables are associated with postoperative morbidity after major colonic surgery: a prospective blinded observational study. Br J Anaesth. 2014;112(4):665–671. doi: 10.1093/bja/aet408.
    1. West MA, Loughney L, Lythgoe D, Barben CP, Sripadam R, Kemp GJ, et al. Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth. 2015;114(2):244–251. doi: 10.1093/bja/aeu318.
    1. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–1234. doi: 10.1136/bjsports-2013-092576.
    1. Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (hit) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med. 2014;44(7):1005–1017. doi: 10.1007/s40279-014-0180-z.
    1. Wilhelm EN, Rech A, Minozzo F, Botton CE, Radaelli R, Teixeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–214. doi: 10.1016/j.exger.2014.11.007.
    1. Wilson JM, Marin PJ, Rhea MR, Wilson SMC, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26:2293–2307. doi: 10.1519/JSC.0b013e31823a3e2d.
    1. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–3094. doi: 10.1161/CIRCULATIONAHA.106.675041.
    1. Zanettini R, Centeleghe P, Ratti F, Benna S, Tullio LD, Sorlini N. Training prescription in patients on beta-blockers: percentage peak exercise methods or self-regulation? Eur J Prev Cardiol. 2012;19:205–212. doi: 10.1177/1741826711398823.
    1. Zelt JG, Hankinson PB, Foster WS, Williams CB, Reynolds J, Garneys E, et al. Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol. 2014;114(11):2427–2436. doi: 10.1007/s00421-014-2960-4.

Source: PubMed

3
Suscribir