Use and Effectiveness of Electrosuit in Neurological Disorders: A Systematic Review with Clinical Implications

David Perpetuini, Emanuele Francesco Russo, Daniela Cardone, Roberta Palmieri, Andrea De Giacomo, Raffaello Pellegrino, Arcangelo Merla, Rocco Salvatore Calabrò, Serena Filoni, David Perpetuini, Emanuele Francesco Russo, Daniela Cardone, Roberta Palmieri, Andrea De Giacomo, Raffaello Pellegrino, Arcangelo Merla, Rocco Salvatore Calabrò, Serena Filoni

Abstract

Electrical stimulation through surface electrodes is a non-invasive therapeutic technique used to improve voluntary motor control and reduce pain and spasticity in patients with central nervous system injuries. The Exopulse Mollii Suit (EMS) is a non-invasive full-body suit with integrated electrodes designed for self-administered electrical stimulation to reduce spasticity and promote flexibility. The EMS has been evaluated in several clinical trials with positive findings, indicating its potential in rehabilitation. This review investigates the effectiveness of the EMS for rehabilitation and its acceptability by patients. The literature was collected through several databases following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Positive effects of the garment on improving motor functions and reducing spasticity have been shown to be related to the duration of the administration period and to the dosage of the treatment, which, in turn, depend on the individual's condition and the treatment goals. Moreover, patients reported wellbeing during stimulation and a muscle-relaxing effect on the affected limb. Although additional research is required to determine the efficacy of this device, the reviewed literature highlights the EMS potential to improve the motor capabilities of neurological patients in clinical practice.

Keywords: cerebral palsy; electro suit; neuroplasticity; rehabilitation; spasticity; stroke; transcutaneous electrical nerve stimulation (TENS).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) wearable garment with 58 electrodes embedded, (b) control unit able to modify and configure the parameters of the EMS.
Figure 2
Figure 2
(a) Flowchart of the literature screening procedure and number of selected papers, (b) number of publications selected per year.
Figure 3
Figure 3
Aerogram reporting the pathologies investigated in the 12 papers included in the review. The numbers of papers selected for each pathology are also shown in the figure.

References

    1. Sluka K.A., Walsh D. Transcutaneous Electrical Nerve Stimulation: Basic Science Mechanisms and Clinical Effectiveness. J. Pain. 2003;4:109–121. doi: 10.1054/jpai.2003.434.
    1. Yue C., Zhang X., Zhu Y., Jia Y., Wang H., Liu Y. Systematic Review of Three Electrical Stimulation Techniques for Rehabilitation after Total Knee Arthroplasty. J. Arthroplast. 2018;33:2330–2337. doi: 10.1016/j.arth.2018.01.070.
    1. Moayedi M., Davis K.D. Theories of Pain: From Specificity to Gate Control. J. Neurophysiol. 2013;109:5–12. doi: 10.1152/jn.00457.2012.
    1. He C.Q. Acute Effects of Acu-TENS on FEV^ Sub 1^ and Blood [Beta]-Endorphin Level in Chronic Obstructive Pulmonary Disease. Altern. Ther. Health Med. 2011;17:8.
    1. Etoom M. Comments on: Influence of Transcutaneous Electrical Nerve Stimulation on Spasticity, Balance, and Walking Speed in Stroke Patients: A Systematic Review and Meta-Analysis. J. Rehabil. Med. 2018;50:94. doi: 10.2340/16501977-2303.
    1. Rosenbaum P., Stewart D. The World Health Organization International Classification of Functioning, Disability, and Health: A Model to Guide Clinical Thinking, Practice and Research in the Field of Cerebral Palsy. Semin. Pediatr. Neurol. 2004;11:5–10. doi: 10.1016/j.spen.2004.01.002.
    1. Mahmood A., Veluswamy S.K., Hombali A., Mullick A., N M., Solomon J.M. Effect of Transcutaneous Electrical Nerve Stimulation on Spasticity in Adults With Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019;100:751–768. doi: 10.1016/j.apmr.2018.10.016.
    1. Schuhfried O., Crevenna R., Fialka-Moser V., Paternostro-Sluga T. Non-Invasive Neuromuscular Electrical Stimulation in Patients with Central Nervous System Lesions: An Educational Review. J. Rehabil. Med. 2012;44:99–105. doi: 10.2340/16501977-0941.
    1. Stein C., Fritsch C.G., Robinson C., Sbruzzi G., Plentz R.D.M. Effects of Electrical Stimulation in Spastic Muscles after Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stroke. 2015;46:2197–2205. doi: 10.1161/STROKEAHA.115.009633.
    1. Garcia M.A.C., Vargas C.D. Is Somatosensory Electrical Stimulation Effective in Relieving Spasticity? A Systematic Review. J. Musculoskelet. Neuronal Interact. 2019;19:317.
    1. Fernández-Tenorio E., Serrano-Muñoz D., Avendaño-Coy J., Gómez-Soriano J. Transcutaneous Electrical Nerve Stimulation for Spasticity: A Systematic Review. Neurologia. 2019;34:451–460. doi: 10.1016/j.nrl.2016.06.009.
    1. Mills P.B., Dossa F. Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity: A Systematic Review. Am. J. Phys. Med. Rehabil. 2016;95:309–318. doi: 10.1097/PHM.0000000000000437.
    1. Wong C., Torabi T.P., Mortensen K., Michelsen J. The Mollii-Suit®—A Novel Method Using Reciprocal Inhibition in Children with Cerebral Palsy, Gross Motor Function Classification System IV-V: A 6-Month Prospective Study. Toxicon. 2018;156:S116. doi: 10.1016/j.toxicon.2018.11.279.
    1. Flodström C., Viklund Axelsson S.-A., Nordström B. A Pilot Study of the Impact of the Electro-Suit Mollii® on Body Functions, Activity, and Participation in Children with Cerebral Palsy. Assist. Technol. 2022;34:411–417. doi: 10.1080/10400435.2020.1837288.
    1. Pascual-Valdunciel A., Kurukuti N.M., Montero-Pardo C., Barroso F.O., Pons J.L. Modulation of Spinal Circuits Following Phase-Dependent Electrical Stimulation of Afferent Pathways. J. Neural Eng. 2023;20:16033. doi: 10.1088/1741-2552/acb087.
    1. Rethlefsen M.L., Kirtley S., Waffenschmidt S., Ayala A.P., Moher D., Page M.J., Koffel J.B. PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021;10:1–19. doi: 10.1186/s13643-020-01542-z.
    1. Bakaniene I., Urbonaviciene G., Janaviciute K., Prasauskiene A. Effects of the Inerventions Method on Gross Motor Function in Children with Spastic Cerebral Palsy. Neurol. I Neurochir. Pol. 2018;52:581–586. doi: 10.1016/j.pjnns.2018.07.003.
    1. Nordstrom B., Prellwitz M. A Pilot Study of Children and Parents Experiences of the Use of a New Assistive Device, the Electro Suit Mollii. Assist. Technol. 2021;33:238–245. doi: 10.1080/10400435.2019.1579267.
    1. Arkkukangas M., Hedberg Graff J., Denison E. Evaluation of the Electro-Dress Mollii® to Affect Spasticity and Motor Function in Children with Cerebral Palsy: Seven Experimental Single-Case Studies with an ABAB Design. Cogent. Eng. 2022;9:2064587. doi: 10.1080/23311916.2022.2064587.
    1. Hedin H., Wong C., Sjödén A. The Effects of Using an Electrodress (Mollii®) to Reduce Spasticity and Enhance Functioning in Children with Cerebral Palsy: A Pilot Study. Eur. J. Physiother. 2022;24:134–143. doi: 10.1080/21679169.2020.1807602.
    1. Raffalt P.C., Bencke J., Mortensen K., Torabi T.P., Wong C., Speedtsberg M.B. Electro-Suit Treatment of Children with Unilateral Cerebral Palsy Alters Nonlinear Dynamics of Walking. Clin. Biomech. 2022;98:105714. doi: 10.1016/j.clinbiomech.2022.105714.
    1. Ertzgaard P., Alwin J., Sorbo A., Lindgren M., Sandsjo L. Evaluation of a Self-Administered Transcutaneous Electrical Stimulation Concept for the Treatment of Spasticity: A Randomized Placebo-Controlled Trial. Eur. J. Phys. Rehabil. Med. 2018;54:507–517. doi: 10.23736/S1973-9087.17.04791-8.
    1. Jonasson L.-L., Sörbo A., Ertzgaard P., Sandsjö L. Patients’ experiences of self-administered electrotherapy for spasticity in stroke and cerebral palsy: A qualitative study. J. Rehabil. Med. 2022;54:1131. doi: 10.2340/jrm.v53.1131.
    1. Palmcrantz S., Pennati G.V., Bergling H., Borg J. Feasibility and Potential Effects of Using the Electro-Dress Mollii on Spasticity and Functioning in Chronic Stroke. J. Neuroeng. Rehabil. 2020;17:1–10. doi: 10.1186/s12984-020-00740-z.
    1. Pennati G.V., Bergling H., Carment L., Borg J., Lindberg P.G., Palmcrantz S. Effects of 60 Min Electrostimulation with the EXOPULSE Mollii Suit on Objective Signs of Spasticity. Front. Neurol. 2021;12:706610. doi: 10.3389/fneur.2021.706610.
    1. Riachi N., Khazen G., Ahdab R., Jörgen S. Pain Reducing Properties of the Mollii Suit on Adults with Chronic Pain Syndromes. J. Neurol. Sci. 2019;405:138–139. doi: 10.1016/j.jns.2019.10.701.
    1. Rubio-Zarapuz A., Apolo-Arenas M.D., Clemente-Suárez V.J., Costa A.R., Pardo-Caballero D., Parraca J.A. Acute Effects of a Session with The EXOPULSE Mollii Suit in a Fibromyalgia Patient: A Case Report. Int. J. Environ. Res. Public Health. 2023;20:2209. doi: 10.3390/ijerph20032209.
    1. Cherni Y., Ballaz L., Lemaire J., Dal Maso F., Begon M. Effect of Low Dose Robotic-Gait Training on Walking Capacity in Children and Adolescents with Cerebral Palsy. Neurophysiol. Clin. 2020;50:507–519. doi: 10.1016/j.neucli.2020.09.005.
    1. Sadowska M., Sarecka-Hujar B., Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020;16:1505–1518. doi: 10.2147/NDT.S235165.
    1. Palisano R.J., Cameron D., Rosenbaum P.L., Walter S.D., Russell D. Stability of the Gross Motor Function Classification System. Dev. Med. Child. Neurol. 2006;48:424–428. doi: 10.1017/S0012162206000934.
    1. Blackman J.A., Svensson C.I., Marchand S. Pathophysiology of Chronic Pain in Cerebral Palsy: Implications for Pharmacological Treatment and Research. Dev. Med. Child. Neurol. 2018;60:861–865. doi: 10.1111/dmcn.13930.
    1. Novak C.M., Ozen M., Burd I. Perinatal Brain Injury: Mechanisms, Prevention, and Outcomes. Clin. Perinatol. 2018;45:357–375. doi: 10.1016/j.clp.2018.01.015.
    1. Schwartz I., Meiner Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015;43:1260–1269. doi: 10.1007/s10439-015-1283-x.
    1. Perpetuini D., Russo E.F., Cardone D., Palmieri R., Filippini C., Tritto M., Pellicano F., De Santis G.P., Pellegrino R., Calabrò R.S., et al. Psychophysiological Assessment of Children with Cerebral Palsy during Robotic-Assisted Gait Training through Infrared Imaging. Int. J. Environ. Res. Public Health. 2022;19:15224. doi: 10.3390/ijerph192215224.
    1. Perpetuini D., Russo E.F., Cardone D., Palmieri R., Filippini C., Tritto M., Pellicano F., De Santis G.P., Calabrò R.S., Merla A. Identification of Functional Cortical Plasticity in Children with Cerebral Palsy Associated to Robotic-Assisted Gait Training: An FNIRS Study. J. Clin. Med. 2022;11:6790. doi: 10.3390/jcm11226790.
    1. Feigin V.L., Brainin M., Norrving B., Martins S., Sacco R.L., Hacke W., Fisher M., Pandian J., Lindsay P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke. 2022;17:18–29. doi: 10.1177/17474930211065917.
    1. Stinear C.M., Lang C.E., Zeiler S., Byblow W.D. Advances and Challenges in Stroke Rehabilitation. Lancet Neurol. 2020;19:348–360. doi: 10.1016/S1474-4422(19)30415-6.
    1. Smania N., Picelli A., Munari D., Geroin C., Ianes P., Waldner A., Gandolfi M. Rehabilitation Procedures in the Management of Spasticity. Eur. J. Phys. Rehabil. Med. 2010;46:423–438.
    1. Opheim A., Danielsson A., Murphy M.A., Persson H.C., Sunnerhagen K.S. Early Prediction of Long-Term Upper Limb Spasticity after Stroke: Part of the SALGOT Study. Neurology. 2015;85:873. doi: 10.1212/WNL.0000000000001908.
    1. Eriksson J., Mataric M.J., Winstein C.J. Hands-off assistive robotics for post-stroke arm rehabilitation; Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR; Chicago, IL, USA. 28 June–1 July 2005; pp. 21–24.
    1. Langhorne P., Bernhardt J., Kwakkel G. Stroke Rehabilitation. Lancet. 2011;377:1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Häuser W., Ablin J., Fitzcharles M.-A., Littlejohn G., Luciano J.V., Usui C., Walitt B. Fibromyalgia. Nat. Rev. Dis. Prim. 2015;1:1–16. doi: 10.1038/nrdp.2015.22.
    1. Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.-E., Lang A.E. Parkinson Disease. Nat. Rev. Dis. Prim. 2017;3:1–21. doi: 10.1038/nrdp.2017.13.
    1. Lequerica A.H., Kortte K. Therapeutic Engagement: A Proposed Model of Engagement in Medical Rehabilitation. Am. J. Phys. Med. Rehabil. 2010;89:415–422. doi: 10.1097/PHM.0b013e3181d8ceb2.
    1. Lequerica A.H., Rapport L.J., Whitman R.D., Millis S.R., Vangel S.J., Jr., Hanks R.A., Axelrod B.N. Psychometric Properties of the Rehabilitation Therapy Engagement Scale When Used among Individuals with Acquired Brain Injury. Rehabil. Psychol. 2006;51:331–337. doi: 10.1037/0090-5550.51.4.331.
    1. Merletti R., Rainoldi A., Farina D. Surface Electromyography for Noninvasive Characterization of Muscle. Exerc. Sport Sci. Rev. 2001;29:20–25. doi: 10.1097/00003677-200101000-00005.
    1. Rampichini S., Vieira T.M., Castiglioni P., Merati G. Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review. Entropy. 2020;22:529. doi: 10.3390/e22050529.
    1. Di Credico A., Perpetuini D., Izzicupo P., Gaggi G., Cardone D., Filippini C., Merla A., Ghinassi B., Di Baldassarre A. Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging. Front. Cardiovasc. Med. 2022;9:893374. doi: 10.3389/fcvm.2022.893374.
    1. Acharya U.R., Joseph K.P., Kannathal N., Lim C.M., Suri J.S. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2006;44:1031–1051. doi: 10.1007/s11517-006-0119-0.
    1. Assenza G., Di Lazzaro V. A Useful Electroencephalography (EEG) Marker of Brain Plasticity: Delta Waves. Neural Regen. Res. 2015;10:1216–1217. doi: 10.4103/1673-5374.162698.
    1. Davidson R.J., Jackson D.C., Larson C.L. Handbook of Psychophysiology. 2nd ed. Cambridge University Press; New York, NY, USA: 2000. Human electroencephalography; pp. 27–52.
    1. Pinti P., Tachtsidis I., Hamilton A., Hirsch J., Aichelburg C., Gilbert S., Burgess P.W. The Present and Future Use of Functional Near-infrared Spectroscopy (FNIRS) for Cognitive Neuroscience. Ann. N. Y. Acad. Sci. 2020;1464:5. doi: 10.1111/nyas.13948.
    1. Forcione M., Chiarelli A.M., Davies D.J., Perpetuini D., Sawosz P., Merla A., Belli A. Cerebral Perfusion and Blood-Brain Barrier Assessment in Brain Trauma Using Contrast-Enhanced near-Infrared Spectroscopy with Indocyanine Green: A Review. J. Cereb. Blood Flow Metab. 2020;40:1586–1598. doi: 10.1177/0271678X20921973.
    1. Carson R.G., Buick A.R. Neuromuscular Electrical Stimulation-promoted Plasticity of the Human Brain. J. Physiol. 2021;599:2375–2399. doi: 10.1113/JP278298.

Source: PubMed

3
Suscribir