The effect of intermittent hypoxic exposure on erythropoietic response and hematological variables in elite athletes

A Kasperska, A Zembron-Lacny, A Kasperska, A Zembron-Lacny

Abstract

This study aimed to evaluate the changes in the erythropoietin level and hematological variables in wrestlers after intermittent hypoxic exposure (IHE). Twelve wrestlers were assigned into two groups: hypoxia (sports training combined with IHE, n=6) and control (sports training, n=6). An IHE was performed for 10 days, with one day off after 6 days, once a day for about an hour. The concentrations of hydrogen peroxide ( H(2)O(2) ), nitric oxide (NO), vascular endothelial growth factor (VEGF) and erythropoietin (EPO), as well as total creatine kinase activity (CK) were measured. Also, the hematological markers (Hb - hemoglobin, Ht - hematocrit, RBC - red blood cell, WBC - white blood cell, Ret - reticulocytes) were analyzed. The 6-day IHE caused an increase in the levels of H(2)O(2), NO and VEGF. Similarly, the EPO level and WBC count reached the highest value after 6 days of IHE. The total Ret number increase constantly during 10 days of IHE. The hypoxia group showed a higher CK activity compared to the control. In conclusion, 10-day IHE in combination with wrestling training elevates levels of H(2)O(2), NO and VEGF, and improves the oxygen transport capacity by the release of EPO and Ret in circulation.

Conflict of interest statement

Conflict of interest

There is no conflict of interest.

Figures

Fig. 1
Fig. 1
The intermittent hypoxic exposure (IHE) and blood sampling during a sports camp.
Fig. 2
Fig. 2
Changes in total creatine kinase (CK) during sports camp; statistically significant differences in the hypoxia and control group compared to baseline (before IHE). Significant differences: *P

References

    1. ABELLAN R, REMACHA AF, VENTURA R, SARDA MP, SEGURA J, REDRIGUEZ FA. Hematologic response to four weeks of intermittent hypobaric hypoxia in highly trained athletes. Hematologica. 2005;90:126–127.
    1. BAKONYI T, RADAK Z. High altitude and free radicals. J Sports Sci Med. 2004;3:64–69.
    1. BASSET FA, JOANISSE DR, BOIVIN F, ST-ONGE J, BILLAUT F, DORE J, CHOUINARD R, FALGAIRETTE G, RICHARD D, BOULAY MR. Effects of short-term normobaric hypoxia on haematology, muscle phenotypes and physical performance in highly trained athletes. Exp Physiol. 2006;91:391–402. doi: 10.1113/expphysiol.2005.031682.
    1. BOOS CJ, LAMB CM, MIDWINTER M, MELLOR A, WOODS DR, HOWLEY M, STANSFIELD T, FOSTER M, O’HARA JP. The effects of acute hypoxia on tissue oxygenation and circulating alarmins in healthy adults. Physiol Res. 2018;67:935–943. doi: 10.33549/physiolres.933743.
    1. CZUBA M, WILK R, KARPIŃSKI J, CHALIMONIUK M, ZAJĄC A, LANGFORT J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLOS ONE. 2017 doi: 10.1371/journal.pone.0180380.
    1. de SMET S, van HERPT P, d’HULST G, van THIENEN R, van LEEMPUTTE M, HESPEL P. Physiological adaptations to hypoxic vs. normoxic training during Intermittent living high. Front Physiol. 2017;8:347. doi: 10.3389/fphys.2017.00347.
    1. FILIPPIN LI, MOREIRA AJ, MARRONI NP, XAVIER RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide. 2009;21:157–163. doi: 10.1016/j.niox.2009.08.002.
    1. FLAHERTY G, O’CONNOR R, JOHNSTON N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis. 2016;14:200–211. doi: 10.1016/j.tmaid.2016.03.015.
    1. FRIEDMANN B, FRESE F, MENOLD E, KAUPER F, JOST J, BARTSCH P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med. 2005;39:148–153. doi: 10.1136/bjsm.2003.011387.
    1. GARCIA N, HOPKINS SR, POWELL FL. Intermittent vs continuous hypoxia: effects on ventilation and erythropoiesis in humans. Wilderness Environ Med. 2000;11:172–179. doi: 10.1580/1080-6032(2000)011[0172:IVCHEO];2.
    1. GATTERER H, SCHENK K, WILLE M, MURNIG P, BURTSCHER M. Effects of massage under hypoxic conditions on exercise-induced muscle damage and physical strain indices in professional soccer players. Biol Sport. 2013;30:81–83. doi: 10.5604/20831862.1044221.
    1. GORE CHJ, RODRIGUEZ FA, TRUIJENS MJ, TOWNSEND NE, STRAY-GUNDERSEN J, LEVINE BD. Increased serum erythropoietin but not red cell production after 4 weeks of intermittent hypobaric hypoxia (4,000–5,500 m) J Appl Physiol. 2006;101:1386–1393. doi: 10.1152/japplphysiol.00342.2006.
    1. HAMLIN MJ, HELLEMANS J. Effect of intermittent normobaric hypoxic exposure at rest on hematological, physiological, and performance parameters in multi-sport athletes. J Sports Sci. 2007;25:431–441. doi: 10.1080/02640410600718129.
    1. HINCKSON EA, HAMLIN MJ, WOOD MR, HOPKINS WG. Game performance and intermittent hypoxic training. Br J Sports Med. 2007;41:537–539. doi: 10.1136/bjsm.2006.033712.
    1. HOPPELER H, VOGT M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001;204:3133–3139.
    1. JOYEUX-FAURE MJ. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759–762. doi: 10.1124/jpet.107.127357.
    1. JULIAN CG, GORE CHJ, WILBER RL, DANIELS JT, FREDERICSON M, STRAY-GUNDERSEN J, HAHN AG, PARISOTTO R, LEVINE BD. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol. 2004;96:1800–1807. doi: 10.1152/japplphysiol.00969.2003.
    1. KATAYAMA K, MATSUO H, ISHIDA K, MORI S, MIYAMURA M. Intermittent hypoxia improves endurance performance and sumaximal exercise efficiency. High Alt Med Biol. 2003;3:291–304. doi: 10.1089/152702903769192250.
    1. KIMURA H, ESUMI H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Polonica. 2003;50:49–59. doi: 10.18388/abp.2003_3713.
    1. LEVINE BD. Intermittent hypoxic training: fact and fancy. High Alt Med Biol. 2002;3:177–193. doi: 10.1089/15270290260131911.
    1. MICHALCZYK M, CZUBA M, ZYDEK G, ZAJĄC A, LANGFORT J. Dietary recommendations for cyclists during altitude training. Nutrients. 2016;8:377. doi: 10.3390/nu8060377.
    1. MILLET G, BENTLEY DJ, ROELS B, McNAUGHTON LR, MERCIER J, CAMERON-SMITH D. Effects of intermittent training on anaerobic performance and MCT transporters in athletes. PLoS ONE. 2014;9:e95092. doi: 10.1371/journal.pone.0095092.
    1. PARALIKAR SJ, PARALIKAR JH. High-altitude medicine. Indian J Occup Environ Med. 2010;14:6–12. doi: 10.4103/0019-5278.64608.
    1. POPRZECKI S, CZUBA M, ZAJĄC A, KARPIŃSKI J, WILK R, BRIL G, MASZCZYK A, TOBOREK M. The blood antioxidant defence capacity during intermittent hypoxic training in elite swimmers. Biol Sport. 2016;33:353–360. doi: 10.5604/20831862.1221607.
    1. PUPIS M, CILLIK I. The influence of intermittent hypoxic training on the body of an endurance athlete. Facta Universitatis. Phys Educ Sport. 2008;6:11–20.
    1. SCHOMMER K, MENOLD E, SUBUDHI AW, BÄRTSCH P. Health risk for athletes at moderate altitude and normobaric hypoxia. Br J Sports Med. 2012;46:828–832. doi: 10.1136/bjsports-2012-091270.
    1. VARGAS-PINILLA OC. Exercise and training at altitudes: physiological effects and protocols. Rev Cienc Salud. 2014;12:111–126. doi: 10.12804/revsalud12.1.2014.07.
    1. WAHL P, SCHMID A, DEMAREES M, ACHTZEHN S, BLOCH W, MESTER J. Responses of angiogenic growth factors to exercise, to hypoxia and to exercise under hypoxic conditions. Int J Sport Med. 2013;34:95–100. doi: 10.1055/s-0032-1314815.
    1. WILBER RL, STRAY-GUNDERSEN J, LEVINE BD. Effect of hypoxic "dose" on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39:1590–1599. doi: 10.1249/mss.0b013e3180de49bd.

Source: PubMed

3
Suscribir