Immersive Virtual Reality in Stroke Patients as a New Approach for Reducing Postural Disabilities and Falls Risk: A Case Series

Irene Cortés-Pérez, Francisco Antonio Nieto-Escamez, Esteban Obrero-Gaitán, Irene Cortés-Pérez, Francisco Antonio Nieto-Escamez, Esteban Obrero-Gaitán

Abstract

Stroke is a neurologic disorder considered the first cause of disability worldwide due to motor, cognitive, and sensorial sequels. Balance dysfunctions in stroke survivors increase the risk of falls and physiotherapeutic rehabilitation is essential to reduce it. Virtual reality (VR) seems to be an alternative to conventional physiotherapy (CT), providing virtual environments and multisensorial inputs to train balance in stroke patients. The aim of this study was to assess if immersive VR treatment is more effective than CT to improve balance after stroke. This study got the approval from the Ethics Committee of the University of Almeria. Three chronic ischemic stroke patients were selected. One patient who received 25 sessions of immersive VR intervention for two months was compared with another patient who received equivalent CT and a third patient with no intervention. Balance, gait, risk of falling, and vestibular and visual implications in the equilibrium were assessed. After the interventions, the two patients receiving any of the treatments showed an improvement in balance compared to the untreated patient. In comparison to CT, our results suggest a higher effect of immersive VR in the improvement of balance and a reduction of falls risk due to the active upright work during the VR intervention.

Keywords: balance; conventional physiotherapy; falls risk; gait; immersive virtual reality; stroke.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Sacco R.L., Kasner S.E., Broderick J.P., Caplan L.R., Connors J.J.B., Culebras A., Elkind M.S.V., George M.G., Hamdan A.D., Higashida R.T., et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–2089. doi: 10.1161/STR.0b013e318296aeca.
    1. Donnan G.A., Fisher M., Macleod M., Davis S.M. Stroke. Lancet. 2008;371:1612–1623. doi: 10.1016/S0140-6736(08)60694-7.
    1. De Luca R., Manuli A., De Domenico C., Lo Voi E., Buda A., Maresca G., Bramanti A., Calabro R.S. Improving neuropsychiatric symptoms following stroke using virtual reality: A case report. Medicine. 2019;98:e15236. doi: 10.1097/MD.0000000000015236.
    1. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1.
    1. Katan M., Luft A. Global Burden of Stroke. Semin. Neurol. 2018;38:208–211. doi: 10.1055/s-0038-1649503.
    1. Wang W., Li K., Wei N., Yin C., Yue S. Evaluation of postural instability in stroke patient during quiet standing; Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Seogwipo, South Korea. 11–15 July 2017; pp. 2522–2525.
    1. Li J., Zhong D., Ye J., He M., Liu X., Zheng H., Jin R., Zhang S.-L. Rehabilitation for balance impairment in patients after stroke: A protocol of a systematic review and network meta-analysis. BMJ Open. 2019;9:e026844. doi: 10.1136/bmjopen-2018-026844.
    1. Bronstein A.M. The interaction of otolith and proprioceptive information in the perception of verticality. The effects of labyrinthine and CNS disease. Ann. N. Y. Acad. Sci. 1999;871:324–333. doi: 10.1111/j.1749-6632.1999.tb09195.x.
    1. Alyono J.C. Vertigo and Dizziness: Understanding and Managing Fall Risk. Otolaryngol. Clin. N. Am. 2018;51:725–740. doi: 10.1016/j.otc.2018.03.003.
    1. Yuan Z.-C., Mo H., Guan J., He J.-L., Wu Z.-J. Risk of hip fracture following stroke, a meta-analysis of 13 cohort studies. Osteoporos. Int. 2016;27:2673–2679. doi: 10.1007/s00198-016-3603-x.
    1. Kobayashi K., Imagama S., Inagaki Y., Suzuki Y., Ando K., Nishida Y., Nagao Y., Ishiguro N. Incidence and characteristics of accidental falls in hospitalizations. Nagoya J. Med. Sci. 2017;79:291–298.
    1. Kobayashi K., Ando K., Inagaki Y., Suzuki Y., Nagao Y., Ishiguro N., Imagama S. Characteristics of falls in orthopedic patients during hospitalization. Nagoya J. Med. Sci. 2018;80:341–349.
    1. Kim J.H., Jang S.H., Kim C.S., Jung J.H., You J.H. Use of virtual reality to enhance balance and ambulation in chronic stroke: A double-blind, randomized controlled study. Am. J. Phys. Med. Rehabil. 2009;88:693–701. doi: 10.1097/PHM.0b013e3181b33350.
    1. Lee H.S., Park Y.J., Park S.W., De Luca R., Manuli A., De Domenico C., Lo Voi E., Buda A., Maresca G., Bramanti A., et al. The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis. Medicine. 2019;2019:e15236. doi: 10.1155/2019/7595639.
    1. Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J. Neuroeng. Rehabil. 2018;15:113. doi: 10.1186/s12984-018-0461-0.
    1. Xiao X., Lin Q., Lo W.-L., Mao Y.-R., Shi X.-C., Cates R.S., Zhou S.-F., Huang D.-F., Li L. Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study. Behav. Neurol. 2017;2017:6261479. doi: 10.1155/2017/6261479.
    1. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 2015;61:117–124. doi: 10.1016/j.jphys.2015.05.017.
    1. Sheehy L., Taillon-Hobson A., Sveistrup H., Bilodeau M., Yang C., Finestone H. Sitting Balance Exercise Performed Using Virtual Reality Training on a Stroke Rehabilitation Inpatient Service: A Randomized Controlled Study. PM R. 2020 doi: 10.1002/pmrj.12331.
    1. Laver K.E., Lange B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017;11:CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Mohammadi R., Semnani A.V., Mirmohammadkhani M., Grampurohit N. Effects of Virtual Reality Compared to Conventional Therapy on Balance Poststroke: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2019;28:1787–1798. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.054.
    1. Golla A., Muller T., Wohlfarth K., Jahn P., Mattukat K., Mau W. Home-based balance training using Wii Fit: A pilot randomised controlled trial with mobile older stroke survivors. Pilot Feasibility Stud. 2018;4:143. doi: 10.1186/s40814-018-0334-0.
    1. Garcia-Munoz C., Casuso-Holgado M.J. Effectiveness of Wii Fit Balance board in comparison with other interventions for post-stroke balance rehabilitation. Systematic review and meta-analysis. Rev. Neurol. 2019;69:271–279.
    1. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Berg K.O., Wood-Dauphinee S.L., Williams J.I., Maki B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health. 1992;83(Suppl. 2):S7–S11.
    1. Hayes K.W., Johnson M.E. Measures of adult general performance tests: The Berg Balance Scale, Dynamic Gait Index (DGI), Gait Velocity, Physical Performance Test (PPT), Timed Chair Stand Test, Timed Up and Go, and Tinetti Performance-Oriented Mobility Assessment (POMA) Arthritis Care Res. 2003;49:S28–S42. doi: 10.1002/art.11411.
    1. Rodríguez Guevara C., Lugo L.H. Validity and reliability of Tinetti Scale for Colombian people. Rev. Colomb. Reumatol. 2012;19:218–233.
    1. Berg K., Wood-Dauphinee S., Williams J.I. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 1995;27:27–36.
    1. Madhavan S., Bishnoi A. Comparison of the Mini-Balance Evaluations Systems Test with the Berg Balance Scale in relationship to walking speed and motor recovery post stroke. Top. Stroke Rehabil. 2017;24:579–584. doi: 10.1080/10749357.2017.1366097.
    1. Negrillo-Cardenas J., Rueda-Ruiz A.J., Ogayar-Anguita C.J., Lomas-Vega R., Segura-Sanchez R.J. A System for the Measurement of the Subjective Visual Vertical using a Virtual Reality Device. J. Med. Syst. 2018;42:124. doi: 10.1007/s10916-018-0981-y.
    1. Piscicelli C., Perennou D. Visual verticality perception after stroke: A systematic review of methodological approaches and suggestions for standardization. Ann. Phys. Rehabil. Med. 2017;60:208–216. doi: 10.1016/j.rehab.2016.02.004.
    1. Sawacha Z., Carraro E., Contessa P., Guiotto A., Masiero S., Cobelli C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J. Neuroeng. Rehabil. 2013;10:95. doi: 10.1186/1743-0003-10-95.
    1. Bonan I.V., Guettard E., Leman M.C., Colle F.M., Yelnik A.P. Subjective Visual Vertical Perception Relates to Balance in Acute Stroke. Arch. Phys. Med. Rehabil. 2006;87:642–646. doi: 10.1016/j.apmr.2006.01.019.
    1. Paolucci T., Iosa M., Morone G., Fratte M.D., Paolucci S., Saraceni V.M., Villani C. Romberg ratio coefficient in quiet stance and postural control in Parkinson’s disease. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2018;39:1355–1360. doi: 10.1007/s10072-018-3423-1.
    1. Ng S.S., Hui-Chan C.W. The timed up & go test: Its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 2005;86:1641–1647.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Montilla-Ibanez A., Martinez-Amat A., Lomas-Vega R., Cruz-Diaz D., la Torre-Cruz M.J.D., Casuso-Perez R., Hita-Contreras F. The Activities-specific Balance Confidence scale: Reliability and validity in Spanish patients with vestibular disorders. Disabil. Rehabil. 2017;39:697–703. doi: 10.3109/09638288.2016.1161087.
    1. Yardley L., Beyer N., Hauer K., Kempen G., Piot-Ziegler C., Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I) Age Ageing. 2005;34:614–619. doi: 10.1093/ageing/afi196.
    1. Salbach N.M., Mayo N.E., Robichaud-Ekstrand S., Hanley J.A., Richards C.L., Wood-Dauphinee S. Balance self-efficacy and its relevance to physical function and perceived health status after stroke. Arch. Phys. Med. Rehabil. 2006;87:364–370. doi: 10.1016/j.apmr.2005.11.017.
    1. Park E.-Y., Lee Y.-J., Choi Y.-I. The sensitivity and specificity of the Falls Efficacy Scale and the Activities-specific Balance Confidence Scale for hemiplegic stroke patients. J. Phys. Ther. Sci. 2018;30:741–743. doi: 10.1589/jpts.28.741.
    1. Kempen G.I.J.M., Todd C.J., Van Haastregt J.C.M., Zijlstra G.A.R., Beyer N., Freiberger E., Hauer K.A., Piot-Ziegler C., Yardley L. Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in older people: Results from Germany, the Netherlands and the UK were satisfactory. Disabil. Rehabil. 2007;29:155–162. doi: 10.1080/09638280600747637.
    1. Buurke J.H., Nene A.V., Kwakkel G., Erren-Wolters V., Ijzerman M.J., Hermens H.J. Recovery of gait after stroke: What changes? Neurorehabil. Neural Repair. 2008;22:676–683. doi: 10.1177/1545968308317972.
    1. de Paula G.V., da Silva T.R., de Souza J.T., Luvizutto G.J., Bazan S.G.Z., Modolo G.P., Winckler F.C., de Oliveira Antunes L.C., Martin L.C., da Costa R.D.M., et al. Effect of ankle-foot orthosis on functional mobility and dynamic balance of patients after stroke: Study protocol for a randomized controlled clinical trial. Medicine. 2019;98:e17317. doi: 10.1097/MD.0000000000017317.
    1. Volgger V., Gurkov R. Acute vestibular syndrome in cerebellar stroke: A case report and review of the literature. HNO. 2017;65:149–152. doi: 10.1007/s00106-016-0315-7.
    1. Molina F., Lomas-Vega R., Obrero-Gaitán E., Rus A., Almagro D.R., Del-Pino-Casado R. Misperception of the subjective visual vertical in neurological patients with or without stroke: A meta-analysis. NeuroRehabilitation. 2019;44:379–388. doi: 10.3233/NRE-182642.
    1. Sharpe J.A., Kumar S., Sundaram A.N. Ocular torsion and vertical misalignment. Curr. Opin. Neurol. 2011;24:18–24. doi: 10.1097/WCO.0b013e328341e2b2.
    1. Walker E.R., Hyngstrom A.S., Schmit B.D. Influence of visual feedback on dynamic balance control in chronic stroke survivors. J. Biomech. 2016;49:698–703. doi: 10.1016/j.jbiomech.2016.01.028.
    1. Kim N., Park Y., Lee B.-H. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke. J. Phys. Ther. Sci. 2015;27:655–658. doi: 10.1589/jpts.27.655.
    1. Tsur A., Segal Z. Falls in stroke patients: Risk factors and risk management. Isr. Med. Assoc. J. 2010;12:216–219.
    1. Dieterich M., Brandt T. Perception of Verticality and Vestibular Disorders of Balance and Falls. Front. Neurol. 2019;10:172. doi: 10.3389/fneur.2019.00172.
    1. Hara Y. Brain plasticity and rehabilitation in stroke patients. J. Nippon Med. Sch. 2015;82:4–13. doi: 10.1272/jnms.82.4.
    1. Garrett B., Taverner T., Gromala D., Tao G., Cordingley E., Sun C. Virtual Reality Clinical Research: Promises and Challenges. JMIR Serious Games. 2018;6:e10839. doi: 10.2196/10839.
    1. Schuemie M.J., van der Straaten P., Krijn M., van der Mast C.A. Research on presence in virtual reality: A survey. Cyberpsychol. Behav. 2001;4:183–201. doi: 10.1089/109493101300117884.
    1. Lee H.-S., Lim J.-H., Jeon B.-H., Song C.-S. Non-immersive Virtual Reality Rehabilitation Applied to a Task-oriented Approach for Stroke Patients: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2020 doi: 10.3233/RNN-190975.
    1. Saposnik G., Cohen L.G., Mamdani M., Pooyania S., Ploughman M., Cheung D., Shaw J., Hall J., Nord P., Dukelow S., et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15:1019–1027. doi: 10.1016/S1474-4422(16)30121-1.
    1. Rougier P.R., Perennou D. Upright standing after stroke: How loading-unloading mechanism participates to the postural stabilization. Hum. Mov. Sci. 2019;64:47–54. doi: 10.1016/j.humov.2019.01.004.
    1. Perennou D., Piscicelli C., Barbieri G., Jaeger M., Marquer A., Barra J. Measuring verticality perception after stroke: Why and how? Neurophysiol. Clin. 2014;44:25–32. doi: 10.1016/j.neucli.2013.10.131.
    1. Brandt T., Dieterich M. Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex. Ann. Neurol. 1994;36:337–347. doi: 10.1002/ana.410360304.
    1. Witsch J., Ferrer M., Navaratnam D. Teaching Video NeuroImages: Vestibulo-ocular reflex defect in cerebellar stroke. Neurology. 2018;91:e888–e889. doi: 10.1212/WNL.0000000000006087.
    1. Miller D.M., Klein C.S., Suresh N.L., Rymer W.Z. Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: Evidence for a vestibulospinal role. Clin. Neurophysiol. 2014;125:2070–2078. doi: 10.1016/j.clinph.2014.01.035.
    1. Della Casa E., Affolter Helbling J., Meichtry A., Luomajoki H., Kool J. Head-eye movement control tests in patients with chronic neck pain; inter-observer reliability and discriminative validity. BMC Musculoskelet. Disord. 2014;15:16. doi: 10.1186/1471-2474-15-16.
    1. Naranjo E.N., Cleworth T.W., Allum J.H.J., Inglis J.T., Lea J., Westerberg B.D., Carpenter M.G. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat. J. Neurophysiol. 2016;115:833–842. doi: 10.1152/jn.00626.2015.
    1. Arntz A.I., van der Putte D.A.M., Jonker Z.D., Hauwert C.M., Frens M.A., Forbes P.A. The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity. Front. Physiol. 2019;10:476. doi: 10.3389/fphys.2019.00476.
    1. Mazzini N.A., Almeida M.G.R., Pompeu J.E., Polese J.C., Torriani-Pasin C. A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: Study protocol for a randomized controlled trial. Trials. 2019;20:436. doi: 10.1186/s13063-019-3396-2.
    1. Kannan L., Vora J., Bhatt T., Hughes S.L. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: A randomized controlled trial. NeuroRehabilitation. 2019;44:493–510. doi: 10.3233/NRE-182683.

Source: PubMed

3
Suscribir