Corneal Higher-Order Aberrations Measurements: Precision of SD-OCT/Placido Topography and Comparison with a Scheimpflug/Placido Topography in Eyes After Small-Incision Lenticule Extraction

Rui Ning, Xiaomin Huang, Yili Jin, Chak Seng Lei, Xindi Ma, Shuoyu Xu, Jinxuan Xiahou, Giacomo Savini, Domenico Schiano-Lomoriello, Xiaoying Wang, Xingtao Zhou, Jinhai Huang, Rui Ning, Xiaomin Huang, Yili Jin, Chak Seng Lei, Xindi Ma, Shuoyu Xu, Jinxuan Xiahou, Giacomo Savini, Domenico Schiano-Lomoriello, Xiaoying Wang, Xingtao Zhou, Jinhai Huang

Abstract

Introduction: The aim of this study was to evaluate the measurements of corneal higher-order aberrations (HOAs) obtained by a new anterior segment optical coherence tomography (OCT) technique combined with a Placido topographer (the MS-39 device) in eyes with prior small-incision lenticule extraction (SMILE) and compare them to the measurements obtained by a Scheimpflug camera combined with a Placido topographer (the Sirius device).

Methods: A total of 56 eyes (56 patients) were included in this prospective study. Corneal aberrations were analyzed for the anterior, posterior, and total cornea surfaces. Within-subject standard deviation (Sw), test-retest repeatability (TRT), and intraclass correlation coefficient (ICC) were used to assess the intraobserver repeatability and interobserver reproducibility. The differences were evaluated by paired t-test. Bland-Altman plots and 95% limits of agreement (95% LoA) were used to evaluate the agreement.

Results: High repeatability was observed for anterior and total corneal parameters, with Sw value < 0.07, TRT ≤ 0.16, and ICCs > 0.893, but not trefoil. For the posterior corneal parameters, ICCs varied from 0.088 to 0.966. Regarding interobserver reproducibility, all Sw values were ≤ 0.04 and TRT ≤ 0.11. ICCs ranged from 0.846 to 0.989, from 0.432 to 0.972, and from 0.798 to 0.985 for the anterior, total, and posterior corneal aberrations parameters, respectively. The mean difference in all aberrations was ≤ 0.05 μm. All parameters showed a narrow 95% LoA.

Conclusion: The MS-39 device achieved high precision in both anterior and total corneal measurements; the precision of posterior corneal higher-order RMS, astigmatism II, coma, and trefoil was lower. The two technologies used by the MS-39 and Sirius devices can be used interchangeably for measuring corneal HOAs after SMILE.

Keywords: Agreement; Higher-order aberrations; Optical coherence tomography-Placido; Small-incision lenticule extraction.

Conflict of interest statement

Rui Ning, Xiaomin Huang, Yili Jin, Chak Seng Lei, Xindi Ma, Shuoyu Xu, Jinxuan Xiahou, Giacomo Savini, Domenico Schiano-Lomoriello, Xiaoying Wang, Xingtao Zhou, and Jinhai Huang have nothing to disclose.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Violin plots between measurements by the MS-39 and Sirius devices in terms of total, anterior, and posterior corneal aberrations. The area represents the probability of distribution around a value. The top and bottom black dotted lines represent the interquartile range, while the middle black line is the median limbus. Statistical comparison between two devices was performed using paired t test. Asterisks indicate a significant difference at *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; ns, not significant p > 0.05
Fig. 2
Fig. 2
Bland–Altman plot of the total RMS and higher-order root mean square (RMS) for the MS-39 and Sirius devices in terms of total, anterior, and posterior corneal aberrations. The solid line represents the mean difference. The dotted lines represent the upper and lower 95% limits of agreement (LoAs). Z Zernike
Fig. 3
Fig. 3
Bland–Altman plot of the coma and trefoil for the MS-39 and Sirius devices in terms of total, anterior, and posterior corneal aberrations. The solid line represents the mean difference. The dotted lines represent the upper and lower 95% LoAs. Z Zernike
Fig. 4
Fig. 4
Bland–Altman plot of the spherical aberration and astigmatism II for the MS-39 and Sirius devices in terms of total, anterior, and posterior corneal aberrations. The solid line represents the mean difference. The dotted lines on the side represent the upper and lower 95% LoAs. Ast Astigmatism, SA spherical aberration, Z Zernike

References

    1. Marcos S, Barbero S, Jiménez-Alfaro I. Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses. J Refract Surg. 2005;21:223–235. doi: 10.3928/1081-597X-20050501-05.
    1. Perez-Straziota CE, Randleman JB, Stulting RD. Visual acuity and higher-order aberrations with wavefront-guided and wavefront-optimized laser in situ keratomileusis. J Cataract Refract Surg. 2010;36:437–441. doi: 10.1016/j.jcrs.2009.09.031.
    1. Rocha KM, Vabre L, Chateau N, Krueger RR. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator. J Refract Surg. 2010;26:52–56. doi: 10.3928/1081597X-20101215-08.
    1. Randleman JB, Perez-Straziota CE, Hu MH, et al. Higher-order aberrations after wavefront-optimized photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2009;35:260–264. doi: 10.1016/j.jcrs.2008.10.032.
    1. Gordon-Shaag A, Millodot M, Ifrah R, Shneor E. Aberrations and topography in normal, keratoconus-suspect, and keratoconic eyes. Optom Vis Sci. 2012;89:411–418. doi: 10.1097/OPX.0b013e318249d727.
    1. Moshirfar M, McCaughey MV, Reinstein DZ, et al. Small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:652–665. doi: 10.1016/j.jcrs.2015.02.006.
    1. Liu Q, Yang X, Lin L, et al. Review on centration, astigmatic axis alignment, pupil size and optical zone in SMILE. Asia Pac J Ophthalmol. (Phila) 2019;8:385–390. doi: 10.1097/01.APO.0000580144.22353.46.
    1. Shah R. History and results; indications and contraindications of SMILE compared with LASIK. Asia Pac J Ophthalmol. (Phila) 2019;8:371–376. doi: 10.1097/01.APO.0000580132.98159.fa.
    1. Lee H, Roberts CJ, Arba-Mosquera S, et al. Relationship between decentration and induced corneal higher-order aberrations following small-incision lenticule extraction procedure. Invest Ophthalmol Vis Sci. 2018;59:2316–2324. doi: 10.1167/iovs.17-23451.
    1. Kang DSY, Lee H, Reinstein DZ, et al. Comparison of the distribution of lenticule decentration following SMILE by subjective patient Fixation or triple marking centration. J Refract Surg. 2018;34:446–452. doi: 10.3928/1081597X-20180517-02.
    1. Fahd DC, Cherfan CG, Raad C, Asouad M, Awwad ST. Assessment of anterior and posterior corneal indices using two Scheimpflug analyzers. Arq Bras Oftalmol. 2014;77:17–20. doi: 10.5935/0004-2749.20140006.
    1. Shetty R, Matalia H, Nandini C, et al. Wavefront-guided LASIK has comparable ocular and corneal aberrometric outcomes but better visual acuity outcomes than SMILE in myopic eyes. J Refract Surg. 2018;34:527–532. doi: 10.3928/1081597X-20180607-02.
    1. Aramberri J, Araiz L, Garcia A, et al. Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg. 2012;38:1934–1949. doi: 10.1016/j.jcrs.2012.06.049.
    1. Bayhan HA, Aslan Bayhan S, Muhafiz E, Can I. Repeatability of aberrometric measurements in normal and keratoconus eyes using a new Scheimpflug-Placido topographer. J Cataract Refract Surg. 2014;40:269–275. doi: 10.1016/j.jcrs.2013.07.046.
    1. Bao F, Savini G, Shu B, et al. Repeatability, reproducibility, and agreement of two Scheimpflug-Placido anterior corneal analyzers for posterior corneal surface measurement. J Refract Surg. 2017;33:524–530. doi: 10.3928/1081597X-20170606-01.
    1. de Jong T, Sheehan MT, Koopmans SA, Jansonius NM. Posterior corneal shape: comparison of height data from 3 corneal topographers. J Cataract Refract Surg. 2017;43:518–524. doi: 10.1016/j.jcrs.2017.03.021.
    1. Piccinini AL, Golan O, Hafezi F, Randleman JB. Higher-order aberration measurements: comparison between Scheimpflug and dual Scheimpflug-Placido technology in normal eyes. J Cataract Refract Surg. 2019;45:490–494. doi: 10.1016/j.jcrs.2018.11.015.
    1. Piccinini AL, Golan O, Torres-Netto EA, Hafezi F, Randleman JB. Corneal higher-order aberrations measurements: comparison between Scheimpflug and dual Scheimpflug-Placido technology in keratoconic eyes. J Cataract Refract Surg. 2019;45:985–991. doi: 10.1016/j.jcrs.2019.02.005.
    1. Schiano-Lomoriello D, Bono V, Abicca I, Savini G. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus. Sci Rep. 2020;10:1124. doi: 10.1038/s41598-020-57926-7.
    1. Vega-Estrada A, Mimouni M, Espla E, Alio Del Barrio J, Alio JL. Corneal epithelial thickness intrasubject repeatability and its relation with visual limitation in keratoconus. Am J Ophthalmol. 2019;200:255–262. doi: 10.1016/j.ajo.2019.01.015.
    1. Savini G, Schiano-Lomoriello D, Hoffer KJ. Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras. J Cataract Refract Surg. 2018;44:471–478. doi: 10.1016/j.jcrs.2018.02.015.
    1. General Assembly of the World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014;81:14–8.
    1. Milla M, Piñero DP, Amparo F, Alió JL. Pachymetric measurements with a new Scheimpflug photography-based system: intraobserver repeatability and agreement with optical coherence tomography pachymetry. J Cataract Refract Surg. 2011;37:310–316. doi: 10.1016/j.jcrs.2010.08.038.
    1. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg. 2011;37:1809–1816. doi: 10.1016/j.jcrs.2011.04.033.
    1. Xu Z, Hua Y, Qiu W, Li G, Wu Q. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers. BMC Ophthalmol. 2018;18:18. doi: 10.1186/s12886-018-0683-8.
    1. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–160. doi: 10.1177/096228029900800204.
    1. Cook WH, McKelvie J, Wallace HB, Misra SL. Comparison of higher order wavefront aberrations with four aberrometers. Indian J Ophthalmol. 2019;67:1030–1035. doi: 10.4103/ijo.IJO_1464_18.
    1. Zhang J, Zheng L, Zhao X, et al. Corneal aberrations after small-incision lenticule extraction versus Q value-guided laser-assisted in situ keratomileusis. Medicine (Baltimore) 2019;98:e14210. doi: 10.1097/MD.0000000000014210.
    1. Jin HY, Wan T, Yu XN, Wu F, Yao K. Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after small incision lenticule extraction (SMILE): high myopia versus mild to moderate myopia. BMC Ophthalmol. 2018;18:295. doi: 10.1186/s12886-018-0965-1.
    1. Siedlecki J, Schmelter V, Schworm B, et al. Corneal wavefront aberrations and subjective quality of vision after small incision lenticule extraction. Acta Ophthalmol. 2020;98:e907–e913. doi: 10.1111/aos.14420.
    1. Tana-Rivero P, Aguilar-Corcoles S, Ruiz-Mesa R, Montes-Mico R. Repeatability of whole-cornea measurements using a new swept-source optical coherence tomographer. Eur J Ophthalmol. 2021;31:1709–1719. doi: 10.1177/1120672120944022.
    1. Ning R, Gao R, Pinero DP, et al. Repeatability and reproducibility of corneal higher-order aberrations measurements after small incision lenticule extraction using the Scheimpflug-Placido topographer. Eye Vis. (Lond) 2022;9:1. doi: 10.1186/s40662-021-00274-y.
    1. Pinero DP, Saenz Gonzalez C, Alio JL. Intraobserver and interobserver repeatability of curvature and aberrometric measurements of the posterior corneal surface in normal eyes using Scheimpflug photography. J Cataract Refract Surg. 2009;35:113–120. doi: 10.1016/j.jcrs.2008.10.010.
    1. McAlinden C, Schwiegerling J, Khadka J, Pesudovs K. Corneal aberrations measured with a high-resolution Scheimpflug tomographer: repeatability and reproducibility. J Cataract Refract Surg. 2020;46:581–590. doi: 10.1097/j.jcrs.0000000000000084.
    1. Sideroudi H, Labiris G, Giarmoulakis A, et al. Repeatability, reliability and reproducibility of posterior curvature and wavefront aberrations in keratoconic and cross-linked corneas. Clin Exp Optom. 2013;96:547–556. doi: 10.1111/cxo.12044.
    1. Perez-Bartolome F, Feu-Basilio S, Rocha-de Lossada C, et al. Agreement between anterior segment swept source-OCT and Scheimpflug imaging corneal aberration measurements in healthy eyes. Eur J Ophthalmol. 2022;32:3363–3371. doi: 10.1177/11206721221076952.
    1. Gim Y, Jun RM, Han KE. Agreement between Scheimpflug camera and the swept-source optical coherence tomography measurements in keratometry and higher-order aberrations. Korean J Ophthalmol. 2021;35:337–348. doi: 10.3341/kjo.2021.0076.
    1. Cade F, Cruzat A, Paschalis EI, Espírito Santo L, Pineda R. Analysis of four aberrometers for evaluating lower and higher order aberrations. PLoS ONE. 2013;8:e54990. doi: 10.1371/journal.pone.0054990.
    1. Burakgazi AZ, Tinio B, Bababyan A, Niksarli KK, Asbell P. Higher order aberrations in normal eyes measured with three different aberrometers. J Refract Surg. 2006;22:898–903. doi: 10.3928/1081-597X-20061101-10.
    1. Sáles CS, Manche EE. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis. J Cataract Refract Surg. 2015;41:1820–1825. doi: 10.1016/j.jcrs.2015.09.014.
    1. Jungnickel H, Weigel D, Babovsky H, et al. Just-noticeable differences for wavefront aberrations obtained with a staircase procedure. J Refract Surg. 2013;29:102–109. doi: 10.3928/1081597X-20130117-04.
    1. Atchison DA, Guo H. Subjective blur limits for higher order aberrations. Optom Vis Sci. 2010;87:E890–E898. doi: 10.1097/OPX.0b013e3181f6fb99.
    1. Koh S. Irregular astigmatism and higher-order aberrations in eyes with dry eye disease. Invest Ophthalmol Vis Sci. 2018;59:DES36–40. doi: 10.1167/iovs.17-23500.

Source: PubMed

3
Suscribir