Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans

Amadou Gaye, Ayo P Doumatey, Sharon K Davis, Charles N Rotimi, Gary H Gibbons, Amadou Gaye, Ayo P Doumatey, Sharon K Davis, Charles N Rotimi, Gary H Gibbons

Abstract

Several clinical guidelines have been proposed to distinguish metabolically healthy obesity (MHO) from other subgroups of obesity but the molecular mechanisms by which MHO individuals remain metabolically healthy despite having a high fat mass are yet to be elucidated. We conducted the first whole blood transcriptomic study designed to identify specific sets of genes that might shed novel insights into the molecular mechanisms that protect or delay the occurrence of obesity-related co-morbidities in MHO. The study included 29 African-American obese individuals, 8 MHO and 21 metabolically abnormal obese (MAO). Unbiased transcriptome-wide network analysis was carried out to identify molecular modules of co-expressed genes that are collectively associated with MHO. Network analysis identified a group of 23 co-expressed genes, including ribosomal protein genes (RPs), which were significantly downregulated in MHO subjects. The three pathways enriched in the group of co-expressed genes are EIF2 signaling, regulation of eIF4 and p70S6K signaling, and mTOR signaling. The expression of ten of the RPs collectively predicted MHO status with an area under the curve of 0.81. Triglycerides/HDL (TG/HDL) ratio, an index of insulin resistance, was the best predictor of the expression of genes in the MHO group. The higher TG/HDL values observed in the MAO subjects may underlie the activation of endoplasmic reticulum (ER) and related-stress pathways that lead to a chronic inflammatory state. In summary, these findings suggest that controlling ER stress and/or ribosomal stress by downregulating RPs or controlling TG/HDL ratio may represent effective strategies to prevent or delay the occurrence of metabolic disorders in obese individuals.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Fig. 1
Fig. 1
Plots of the normalized expression of the top 7 DE genes in the lightpink module and the top gene (RPL37A) in the khaki4 module
Fig. 2
Fig. 2
Model performance and ranking of (a) 15 genes from the lightpink module and (b) a subset of 10 genes identified through variable selection that collectively predict MHO with the same performance
Fig. 3
Fig. 3
Prediction of gene expression using individual components of MHO definition: TG/HDL ratio is the best predictor of MHO status
Fig. 4
Fig. 4
Graphical depiction of the three complementary analytical strategies implemented in this study

References

    1. Reaven G. All obese individuals are not created equal: insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diabetes Vasc. Dis. Res. 2005;2:105–112. doi: 10.3132/dvdr.2005.017.
    1. Rey-Lopez JP, de Rezende LF, Pastor-Valero M, Tess BH. The prevalence of metabolically healthy obesity: a systematic review and critical evaluation of the definitions used. Obes. Rev. 2014;15:781–790. doi: 10.1111/obr.12198.
    1. Doumatey AP, et al. Paradoxical hyperadiponectinemia is associated with the metabolically healthy obese (MHO) phenotype in African Americans. J. Endocrinol. Metab. 2012;2:51–65.
    1. Munoz-Garach, A., Cornejo-Pareja, I. & Tinahones, F. J. Does Metabolically Healthy Obesity Exist? Nutrients8, 10.3390/nu8060320 (2016).
    1. Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes & Endocrinol. 2013;1:152–162. doi: 10.1016/S2213-8587(13)70062-7.
    1. Badoud F, Perreault M, Zulyniak MA, Mutch DM. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals. Faseb. J. 2015;29:748–758. doi: 10.1096/fj.14-263913.
    1. Wang F, Deeney JT, Denis GV. Brd2 gene disruption causes “metabolically healthy” obesity: epigenetic and chromatin-based mechanisms that uncouple obesity from type 2 diabetes. Vitam. Horm. 2013;91:49–75. doi: 10.1016/B978-0-12-407766-9.00003-1.
    1. Kim JY, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 2007;117:2621–2637. doi: 10.1172/JCI31021.
    1. Kloting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).
    1. Stefan N, et al. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008;168:1609–1616. doi: 10.1001/archinte.168.15.1609.
    1. Diaz-Ruiz A, et al. Proteasome dysfunction associated to oxidative stress and proteotoxicity in adipocytes compromises insulin sensitivity in human obesity. Antioxid. Redox Signal. 2015;23:597–612. doi: 10.1089/ars.2014.5939.
    1. Doumatey AP, et al. Proinflammatory and lipid biomarkers mediate metabolically healthy obesity: A proteomics study. Obesity. 2016;24:1257–1265. doi: 10.1002/oby.21482.
    1. Naukkarinen J, et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia. 2014;57:167–176. doi: 10.1007/s00125-013-3066-y.
    1. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47–C52. doi: 10.1038/35011540.
    1. Mondal AK, et al. Effect of endoplasmic reticulum stress on inflammation and adiponectin regulation in human adipocytes. Metab. Syndr. Relat. Disord. 2012;10:297–306. doi: 10.1089/met.2012.0002.
    1. Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J. Mol. Cell. Biol. 2015;7:92–104. doi: 10.1093/jmcb/mjv014.
    1. Kirn-Safran CB, et al. Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev. Dyn. 2007;236:447–460. doi: 10.1002/dvdy.21046.
    1. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 2016;7:30. doi: 10.3389/fendo.2016.00030.
    1. Dez C, Tollervey D. Ribosome synthesis meets the cell cycle. Curr. Opin. Microbiol. 2004;7:631–637. doi: 10.1016/j.mib.2004.10.007.
    1. Suwa A, Kurama T, Shimokawa T. Adipocyte hyperplasia and RMI1 in the treatment of obesity. Febs. J. 2011;278:565–569. doi: 10.1111/j.1742-4658.2010.07980.x.
    1. Lam YW, Lamond AI, Mann M, Andersen JS. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 2007;17:749–760. doi: 10.1016/j.cub.2007.03.064.
    1. Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16:369–377. doi: 10.1016/j.ccr.2009.09.024.
    1. Garg AD, et al. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol. Med. 2012;18:589–598. doi: 10.1016/j.molmed.2012.06.010.
    1. Steffen KK, et al. Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics. 2012;191:107–118. doi: 10.1534/genetics.111.136549.
    1. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer. 2010;10:301–309. doi: 10.1038/nrc2819.
    1. Zirath H, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc. Natl. Acad. Sci. USA. 2013;110:10258–10263. doi: 10.1073/pnas.1222404110.
    1. Wildman RP, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004) Arch. Intern. Med. 2008;168:1617–1624. doi: 10.1001/archinte.168.15.1617.
    1. Genuer R, Poggi JM, Tuleau-Malot C. VSURF: an R package for variable selection using random forests. R. J. 2015;7:19–33.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923.
    1. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc. Bioinforma. 2011;12:323. doi: 10.1186/1471-2105-12-323.
    1. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25.
    1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. Bmc. Bioinforma. 2008;9:559. doi: 10.1186/1471-2105-9-559.
    1. Michener CD, R. SR. A quantitative approach to a problem of classification. Evolution. 1957;11:490–499. doi: 10.1111/j.1558-5646.1957.tb02884.x.
    1. Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. Bmc. Bioinforma. 2007;8:22. doi: 10.1186/1471-2105-8-22.
    1. Dewey FE, et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ. Cardiovasc. Genet. 2011;4:26–35. doi: 10.1161/CIRCGENETICS.110.941757.
    1. Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007.
    1. Gaye A. Extending the R library PROPER to enable power calculations for isoform-level analysis with EBSeq. Front. Genet. 2016;7:225.
    1. Wu H, Wang C, Wu Z. PROPER: comprehensive power evaluation for differential expression using RNA-seq. Bioinformatics. 2015;31:233–241. doi: 10.1093/bioinformatics/btu640.
    1. Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324.
    1. Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recogn. Lett. 2010;31:2225–2236. doi: 10.1016/j.patrec.2010.03.014.

Source: PubMed

3
Suscribir