Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals

Xiang Gao, Weidong Zhang, Yongbo Wang, Pardis Pedram, Farrell Cahill, Guangju Zhai, Edward Randell, Wayne Gulliver, Guang Sun, Xiang Gao, Weidong Zhang, Yongbo Wang, Pardis Pedram, Farrell Cahill, Guangju Zhai, Edward Randell, Wayne Gulliver, Guang Sun

Abstract

Background: Metabolic abnormalities are more associated with central obesity than peripheral obesity, but the underlying mechanisms are largely unknown. The present study was to identify serum metabolic biomarkers which distinguish metabolically unhealthy centrally obese (MUCO) from metabolically healthy peripherally obese (MHPO) individuals.

Methods: A two-stage case-control study design was employed. In the discovery stage, 20 individuals (10 MHPO and 10 MUCO) were included and in the following validation stage, 79 individuals (20 normal weight (NW), 30 MHPO, 29 MUCO) were utilized. Study groups were matched for age, sex, physical activity and total dietary calorie intake with MHPO and MUCO additionally matched for BMI. Metabolic abnormality was defined as: 1) HOMA-IR > 4.27 (90(th) percentile), 2) high-density lipoprotein cholesterol < 1.03 mmol/L in men and < 1.30 mmol/L in women, 3) fasting blood glucose ≥ 5.6 mmol/L, and 4) waist circumference > 102 cm in men and > 88 cm in women. MUCO individuals had all of these abnormalities whereas MHPO and NW individuals had none of them. A targeted metabolomics approach was performed on fasting serum samples, which can simultaneously identify and quantify 186 metabolites.

Results: In the discovery stage, serum leucine, isoleucine, tyrosine, valine, phenylalanine, alpha-aminoadipic acid, methioninesulfoxide and propionylcarnitine were found to be significantly higher in MUCO, compared with MHPO group after multiple testing adjustment. Significant changes of five metabolites (leucine, isoleucine, valine, alpha-aminoadipic acid, propionylcarnitine) were confirmed in the validation stage.

Conclusions: Significantly higher levels of serum leucine, isoleucine, valine, alpha-aminoadipic acid, propionylcarnitine are characteristic of metabolically unhealthy centrally obese patients. The finding provides novel insights into the pathogenesis of metabolic abnormalities in obesity.

Keywords: Biomarkers; Healthy peripheral obesity; Human; Metabolomics; Serum; Unhealthy central obesity.

Figures

Fig. 1
Fig. 1
PLS-DA score plots of MUCO and MHPO groups. “1” represent metabolically healthy peripheral obesity (MHPO) group; “2” represent metabolically unhealthy central obesity (MUCO) group

References

    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–81. doi: 10.1016/S0140-6736(14)60460-8.
    1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors. 2001. JAMA. 2003;289(1):76–9. doi: 10.1001/jama.289.1.76.
    1. Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab. 2004;89(6):2583–9. doi: 10.1210/jc.2004-0535.
    1. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91. doi: 10.1038/nrc1408.
    1. Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80. doi: 10.1038/nature05487.
    1. Karelis A, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004;30(6):569–72. doi: 10.1016/S1262-3636(07)70156-8.
    1. Aguilar-Salinas CA, García EG, Robles L, Riano D, Ruiz-Gomez DG, García-Ulloa AC, et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008;93(10):4075–9. doi: 10.1210/jc.2007-2724.
    1. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16. doi: 10.1001/archinte.168.15.1609.
    1. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004) Arch Intern Med. 2008;168(15):1617–24. doi: 10.1001/archinte.168.15.1617.
    1. Primeau V, Coderre L, Karelis A, Brochu M, Lavoie M, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011;35(7):971–81. doi: 10.1038/ijo.2010.216.
    1. Shea JL, Randell EW, Sun G. The Prevalence of Metabolically Healthy Obese Subjects Defined by BMI and Dual‐Energy X‐Ray Absorptiometry. Obesity. 2011;19(3):624–30. doi: 10.1038/oby.2010.174.
    1. Boonchaya-Anant P, Apovian CM. Metabolically Healthy Obesity—Does it Exist? Current atherosclerosis reports. 2014;16(10):1–9. doi: 10.1007/s11883-014-0441-1.
    1. German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1(1):3–9. doi: 10.1007/s11306-005-1102-8.
    1. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. doi: 10.1016/j.cmet.2009.02.002.
    1. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5(12):e15234. doi: 10.1371/journal.pone.0015234.
    1. Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953. doi: 10.1371/journal.pone.0013953.
    1. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. Journal of the American College of Cardiology. 2008;52(2):117–23. doi: 10.1016/j.jacc.2008.03.043.
    1. Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27. doi: 10.1007/s12010-012-9891-5.
    1. Zhang A, Sun H, Han Y, Yuan Y, Wang P, Song G, et al. Exploratory urinary metabolic biomarkers and pathways using UPLC-Q-TOF-HDMS coupled with pattern recognition approach. Analyst. 2012;137(18):4200–8. doi: 10.1039/c2an35780a.
    1. Wiklund PK, Pekkala S, Autio R, Munukka E, Xu L, Saltevo J, et al. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetol Metab Syndr. 2014;6(1):40. doi: 10.1186/1758-5996-6-40.
    1. Böhm A, Halama A, Meile T, Zdichavsky M, Lehmann R, Weigert C, et al. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals. PLoS One. 2014;9(4):e93148. doi: 10.1371/journal.pone.0093148.
    1. Chen H, Tseng Y, Wang S, Tsai Y, Chang C, Kuo T, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes. 2015;39(8):1241–8. doi: 10.1038/ijo.2015.65.
    1. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, et al. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis. 2010;69:1227–31. doi: 10.1136/ard.2009.120857.
    1. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42. doi: 10.1007/s11306-011-0293-4.
    1. Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie Y-g, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74–8.
    1. Sun G, Vasdev S, Martin GR, Gadag V, Zhang H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and β-cell function in the Newfoundland population. Diabetes. 2005;54(11):3336–9. doi: 10.2337/diabetes.54.11.3336.
    1. Kennedy AP, Shea JL, Sun G. Comparison of the Classification of Obesity by BMI vs. Dual‐energy X‐ray Absorptiometry in the Newfoundland Population. Obesity. 2009;17(11):2094–9. doi: 10.1038/oby.2009.101.
    1. Shea J, King M, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovas. 2012;22(9):741–747. doi: 10.1016/j.numecd.2010.11.009.
    1. Fontaine-Bisson B, Thorburn J, Gregory A, Zhang H, Sun G. Melanin-concentrating hormone receptor 1 polymorphisms are associated with components of energy balance in the Complex Diseases in the Newfoundland Population: Environment and Genetics (CODING) study. Am J Clin Nutr. 2014;99(2):384–391. doi: 10.3945/ajcn.113.073387.
    1. Rothney MP, Xia Y, Wacker WK, Martin FP, Beaumont M, Rezzi S, et al. Precision of a new tool to measure visceral adipose tissue (VAT) using dual‐energy X‐Ray absorptiometry (DXA) Obesity. 2013;21(1):e134–6. doi: 10.1002/oby.20140.
    1. Ergun DL, Rothney MP, Oates MK, Xia Y, Wacker WK, Binkley NC. Visceral adipose tissue quantification using lunar prodigy. J Clin Densitom. 2013;16(1):75–8. doi: 10.1016/j.jocd.2012.09.002.
    1. Willett WC, Sampson L, STAMPFER MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.
    1. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires the Eating at America's Table Study. Am J Epidemiol. 2001;154(12):1089–99. doi: 10.1093/aje/154.12.1089.
    1. Michels KB, Willett WC. Self-administered semiquantitative food frequency questionnaires: patterns, predictors, and interpretation of omitted items. Epidemiology. 2009;20(2):295. doi: 10.1097/EDE.0b013e3181931515.
    1. Pedram P, Sun G. Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction. Nutrients. 2014;7(1):223–38. doi: 10.3390/nu7010223.
    1. Baecke J, Burema J, Frijters J. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.
    1. Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. doi: 10.1007/BF00280883.
    1. Seo MH, Rhee E-J. Metabolic and cardiovascular implications of a metabolically healthy obesity phenotype. Endocrinology and Metabolism. 2014;29(4):427–34. doi: 10.3803/EnM.2014.29.4.427.
    1. Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. The American journal of cardiology. 1994;73(7):460–8. doi: 10.1016/0002-9149(94)90676-9.
    1. World Health Organization. Obesity: preventing and managing the global epidemic. World Health Organization; 2000. .
    1. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 2009;106(5):1692–1701. doi: 10.1152/japplphysiol.91351.2008.
    1. Blaak E. Gender differences in fat metabolism. Curr Opin ClinL Nutr. 2001;4(6):499–502. doi: 10.1097/00075197-200111000-00006.
    1. DeFronzo RA. Glucose intolerance and aging. Diabetes Care. 1981;4(4):493–501. doi: 10.2337/diacare.4.4.493.
    1. Weinsier RL, Hunter GR, Heini AF, Goran MI, Sell SM. The etiology of obesity: relative contribution of metabolic factors, diet, and physical activity. Am J Med. 1998;105(2):145–50. doi: 10.1016/S0002-9343(98)00190-9.
    1. Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Me. 2007;32(1):76–88. doi: 10.1139/h06-113.
    1. Shah S, Crosslin D, Haynes C, Nelson S, Turer C, Stevens R, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia. 2012;55(2):321–30. doi: 10.1007/s00125-011-2356-5.
    1. Tom A, Nair KS. Assessment of branched-chain amino Acid status and potential for biomarkers. J Nutr. 2006;136(1 Suppl):324S–30S.
    1. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endoc M. 2007;293(6):E1552–63.
    1. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14. doi: 10.1016/j.cmet.2012.01.024.
    1. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285(15):11348–56. doi: 10.1074/jbc.M109.075184.
    1. Sears D, Hsiao G, Hsiao A, Yu J, Courtney C, Ofrecio J, et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. P Natl Acad Sci. 2009;106(44):18745–50. doi: 10.1073/pnas.0903032106.
    1. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304(11):E1175–87. doi: 10.1152/ajpendo.00630.2012.
    1. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroentero. 2013;19(43):7620. doi: 10.3748/wjg.v19.i43.7620.
    1. Felig P, Marliss E, Cahill GF., Jr Plasma amino acid levels and insulin secretion in obesity. New Engl J Med. 1969;281(15):811–6. doi: 10.1056/NEJM196910092811503.
    1. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. doi: 10.1038/nm.2307.
    1. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circulation: Cardiovascular Genetics. 2010; doi: 10.1161/CIRCGENETICS. 109.852814.
    1. Wang C, Guo F. Branched chain amino acids and metabolic regulation. Chinese Sci Bull. 2013;58(11):1228–35. doi: 10.1007/s11434-013-5681-x.
    1. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, et al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol. 2008;4(1):214.
    1. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125(18):2222–31. doi: 10.1161/CIRCULATIONAHA.111.067827.
    1. Stančáková A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, Paananen J, Pihlajamäki J, Bonnycastle LL, Morken MA. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61(7):1895–902. doi: 10.2337/db11-1378.
    1. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48. doi: 10.2337/db12-0495.
    1. Bach A. Carnitine biosynthesis in mammals. Reprod Nutr Dev. 1981;22(4):583–96. doi: 10.1051/rnd:19820501.
    1. Matern D. Acylcarnitines, including in vitro loading tests. Laboratory Guide to the Methods in Biochemical Genetics. Springer; 2008. 171–206. .
    1. Mai M, Tönjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB. Serum levels of acylcarnitines are altered in prediabetic conditions. PloS One. 2013;8(12):e82459. doi: 10.1371/journal.pone.0082459.
    1. Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity. 2010;18(9):1695–700. doi: 10.1038/oby.2009.510.
    1. Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-TOF MS) J Proteome Res. 2010;9(9):4368–75. doi: 10.1021/pr100101p.
    1. Guidetti P, Schwarcz R. Determination of α-aminoadipic acid in brain, peripheral tissues, and body fluids using GC/MS with negative chemical ionization. Mol Brain Res. 2003;118(1):132–9. doi: 10.1016/j.molbrainres.2003.08.004.
    1. Chang YF. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978;30(2):347–54. doi: 10.1111/j.1471-4159.1978.tb06536.x.
    1. Urpi-Sarda M, Almanza-Aguilera E, Tulipani S, Tinahones FJ, Salas-Salvadó J, Andres-Lacueva C. Metabolomics for Biomarkers of Type 2 Diabetes Mellitus: Advances and Nutritional Intervention Trends. Current Cardiovascular Risk Reports. 2015;9(3):1–12. doi: 10.1007/s12170-015-0440-y.
    1. Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–17. doi: 10.1172/JCI64801.
    1. Lee A, Jang HB, Ra M, Choi Y, Lee H-J, Park JY, et al. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling. Obes Res Clin Pract. 2015;9(4):336–45. doi: 10.1016/j.orcp.2014.10.220.
    1. Hosker J, Matthews D, Rudenski A, Burnett M, Darling P, Bown E, et al. Continuous infusion of glucose with model assessment: measurement of insulin resistance and β-cell function in man. Diabetologia. 1985;28(7):401–11. doi: 10.1007/BF00280882.

Source: PubMed

3
Suscribir