Improved Models of Human Endometrial Organoids Based on Hydrogels from Decellularized Endometrium

Emilio Francés-Herrero, Elena Juárez-Barber, Hannes Campo, Sara López-Martínez, Lucía de Miguel-Gómez, Amparo Faus, Antonio Pellicer, Hortensia Ferrero, Irene Cervelló, Emilio Francés-Herrero, Elena Juárez-Barber, Hannes Campo, Sara López-Martínez, Lucía de Miguel-Gómez, Amparo Faus, Antonio Pellicer, Hortensia Ferrero, Irene Cervelló

Abstract

Organoids are three-dimensional (3D) multicellular tissue models that mimic their corresponding in vivo tissue. Successful efforts have derived organoids from primary tissues such as intestine, liver, and pancreas. For human uterine endometrium, the recent generation of 3D structures from primary endometrial cells is inspiring new studies of this important tissue using precise preclinical models. To improve on these 3D models, we decellularized pig endometrium containing tissue-specific extracellular matrix and generated a hydrogel (EndoECM). Next, we derived three lines of human endometrial organoids and cultured them in optimal and suboptimal culture expansion media with or without EndoECM (0.01 mg/mL) as a soluble additive. We characterized the resultant organoids to verify their epithelial origin, long-term chromosomal stability, and stemness properties. Lastly, we determined their proliferation potential under different culture conditions using proliferation rates and immunohistochemical methods. Our results demonstrate the importance of a bioactive environment for the maintenance and proliferation of human endometrial organoids.

Keywords: ECM hydrogel; decellularization; endometrium; organoids; proliferation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Experimental design. Human endometrial organoids were cultured under four different experimental conditions (ExM, ExM+EndoECM, ExM-NA, ExM-NA+EndoECM) and evaluated microscopically, histologically, immunohistochemically, and for chromosomal stability. Abbreviations: EndoECM, endometrial extracellular matrix; IHC: immunohistochemistry; IHF: immunohistofluorescence; N-CAD: N-cadherin; SSEA-1: stage-specific embryonic antigen-1; ExM: expansion medium; NA; nicotinamide. Created with BioRender.com.
Figure 2
Figure 2
Characterization of glandular origin in human endometrial organoids by histological and immunohistochemical staining. H&E, PAS staining, and MUC-1 expression in positive controls (endometrium and kidney) and in human endometrial organoids cultured in the four different experimental conditions: ExM, ExM+EndoECM, ExM-NA, ExM-NA+EndoECM. Negative controls for MUC-1 are shown at the bottom of the figure in small size. Scale bars are 100 µm.
Figure 3
Figure 3
Characterization of epithelial phenotype in human endometrial organoid by immunofluorescence staining. Epithelial (pan-cytokeratin) and stromal (vimentin) marker expressions in human endometrium and organoids cultured in the four different experimental conditions: ExM, ExM+EndoECM, ExM-NA, and ExM-NA+EndoECM. Cell’s nuclei stained with DAPI. Scale bars are 100 µm.
Figure 4
Figure 4
Chromosomal analysis of human endometrial organoids by cytogenetic microarray. (a) Genomic DNAs from early (p3), mid (p5), and late (p8) passage organoids exposed to ExM and EndoECM culture conditions are compared with a human reference genome. Intensity of each probe (log ratio) is expressed on the Y-axis and its location on chromosomes (1–22, X and Y) on the X-axis. A signal ratio of 0 indicates copy number equivalence. Reduced signal on the Y chromosome is not significant due to the absence of this chromosome in the samples. (b) Summary of genetic analyses.
Figure 5
Figure 5
Comparative proliferation of human endometrial organoids exposed to different conditions. (a) Representative images of endometrial organoids in all culture conditions: ExM, ExM+EndoECM, ExM-NA, ExM-NA+EndoECM. (b) Days 2–7, 2–5, and 5–7 proliferation rates. * p < 0.05, ** p < 0.001, *** p < 0.0001. Scale bars are 1 mm.
Figure 6
Figure 6
Human endometrial organoids proliferation assay. (a) Immunohistochemistry for Ki67 expression in breast cancer and organoids cultured in the four different experimental conditions ExM, ExM+EndoECM, ExM-NA, ExM-NA+EndoECM. (b) Percentage of Ki67 positive cells in organoids. * p < 0.05, ** p < 0.01, *** p < 0.0001. Scale bars are 100 µm.
Figure 7
Figure 7
Epithelial progenitor cell markers in human endometrial organoids. N-cadherin (green) and SSEA-1 (red) expressions in positive controls (human endometrium) and human endometrial organoids cultured in the four different experimental conditions: ExM, ExM+EndoECM, ExM-NA, ExM-NA+EndoECM. A higher magnification of the boxed areas is shown in all panels. Cell’s nuclei stained with DAPI. Scale bars are 10 µm.

References

    1. Lessey B.A. The role of the endometrium during embryo implantation. Hum. Reprod. 2000;15:39–50.
    1. Strowitzki T., Germeyer A., Popovici R., Von Wolff M. The human endometrium as a fertility-determining factor. Hum. Reprod. Update. 2006;12:617–630. doi: 10.1093/humupd/dml033.
    1. Macer M.L., Taylor H.S. Endometriosis and Infertility. Obstet. Gynecol. Clin. N. Am. 2012;39:535–549. doi: 10.1016/j.ogc.2012.10.002.
    1. Salazar C.A., Isaacson K., Morris S. A comprehensive review of Asherman’s syndrome: Causes, symptoms and treatment options. Curr. Opin. Obstet. Gynecol. 2017;29:249–256. doi: 10.1097/GCO.0000000000000378.
    1. Giudice L.C. Clinical practice. Endometriosis. N. Engl. J. Med. 2010;362:2389–2398. doi: 10.1056/NEJMcp1000274.
    1. Bourdon M., Santulli P., Oliveira J., Marcellin L., Maignien C., Melka L., Bordonne C., Millisher A.-E., Plu-Bureau G., Cormier J., et al. Focal adenomyosis is associated with primary infertility. Fertil. Steril. 2020;114:1271–1277. doi: 10.1016/j.fertnstert.2020.06.018.
    1. Yu D., Wong Y.-M., Cheong Y., Xia E., Li T.C. Asherman syndrome—One century later. Fertil. Steril. 2008;89:759–779. doi: 10.1016/j.fertnstert.2008.02.096.
    1. Senturk L.M., Erel C.T. Thin endometrium in assisted reproductive technology. Curr. Opin. Obstet. Gynecol. 2008;20:221–228. doi: 10.1097/GCO.0b013e328302143c.
    1. Andersen M.D., Alstrup A.K.O., Duvald C.S., Mikkelsen E.F.R., Vendelbo M.H., Ovesen P.G., Pedersen M. Experimental Animal Models of Human Diseases—An Effective Therapeutic Strategy. IntechOpen; London, UK: 2018. Animal Models of Fetal Medicine and Obstetrics.
    1. Heidari-Khoei H., Esfandiari F., Hajari M.A., Ghorbaninejad Z., Piryaei A., Baharvand H. Organoid technology in female reproductive biomedicine. Reprod. Biol. Endocrinol. 2020;18:1–19. doi: 10.1186/s12958-020-00621-z.
    1. De Souza N. Organoids. Nat. Methods. 2018;15:23. doi: 10.1038/nmeth.4576.
    1. Serra D., Mayr U., Boni A., Lukonin I., Rempfler M., Meylan L.C., Stadler M.B., Strnad P., Papasaikas P., Vischi D., et al. Self-organization and symmetry breaking in intestinal organoid development. Nat. Cell Biol. 2019;569:66–72. doi: 10.1038/s41586-019-1146-y.
    1. Takasato M., Er P.X., Chiu H.S., Little M.H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 2016;11:1681–1692. doi: 10.1038/nprot.2016.098.
    1. Turco M.Y., Gardner L., Hughes J., Cindrova-Davies T., Gomez M.J., Farrell L., Hollinshead M., Marsh S.G.E., Brosens J.J., Critchley H.O., et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 2017;19:568–577. doi: 10.1038/ncb3516.
    1. Boretto M., Cox B., Noben M., Hendriks N., Fassbender A., Roose H., Amant F., Timmerman D., Tomassetti C., Vanhie A., et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 2017;144:1775–1786. doi: 10.1242/dev.148478.
    1. Boretto M., Maenhoudt N., Luo X., Hennes A., Boeckx B., Bui B., Heremans R., Perneel L., Kobayashi H., Van Zundert I., et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 2019;21:1041–1051. doi: 10.1038/s41556-019-0360-z.
    1. Arnold J.T., Kaufman D.G., Seppälä M., Lessey B.A. Endometrial stromal cells regulate epithelial cell growth in vitro: A new co-culture model. Hum. Reprod. 2001;16:836–845. doi: 10.1093/humrep/16.5.836.
    1. Truskey G.A. Human Microphysiological Systems and Organoids as in Vitro Models for Toxicological Studies. Front. Public Health. 2018;6:185. doi: 10.3389/fpubh.2018.00185.
    1. Yin X., Mead B.E., Safaee H., Langer R., Karp J.M., Levy O. Engineering Stem Cell Organoids. Cell Stem Cell. 2016;18:25–38. doi: 10.1016/j.stem.2015.12.005.
    1. Mouw J.K., Ou G., Weaver V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014;15:771–785. doi: 10.1038/nrm3902.
    1. Cervelló I., Medrano J.V., Simón C. Translating Regenerative Medicine to the Clinic. Elsevier BV; Amsterdam, The Netherlands: 2016. Regenerative Medicine and Tissue Engineering in Reproductive Medicine; pp. 139–151.
    1. Li D., Lin T.L., Lipe B., Hopkins R.A., Shinogle H., Aljitawi O.S. A novel extracellular matrix-based leukemia model supports leukemia cells with stem cell-like characteristics. Leuk. Res. 2018;72:105–112. doi: 10.1016/j.leukres.2018.08.012.
    1. Lam D., Enright H.A., Cadena J., Peters S., Sales A.P., Osburn J.J., Soscia D.A., Kulp K.S., Wheeler E.K., Fischer N.O. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-40128-1.
    1. Ijima H., Nakamura S., Bual R.P., Yoshida K. Liver-specific extracellular matrix hydrogel promotes liver-specific functions of hepatocytes in vitro and survival of transplanted hepatocytes in vivo. J. Biosci. Bioeng. 2019;128:365–372. doi: 10.1016/j.jbiosc.2019.02.014.
    1. Hynes R.O. The extracellular matrix: Not just pretty fibrils. Science. 2009;326:1216–1219. doi: 10.1126/science.1176009.
    1. Hellström M., Moreno-Moya J.M., Bandstein S., Bom E., Akouri R.R., Miyazaki K., Maruyama T., Brännström M. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil. Steril. 2016;106:487–496.e1. doi: 10.1016/j.fertnstert.2016.03.048.
    1. Miyazaki K., Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35:8791–8800. doi: 10.1016/j.biomaterials.2014.06.052.
    1. Campo H., Garcia-Dominguez X., López-Martínez S., Faus A., Antón J.S.V., Marco-Jiménez F., Cervelló I. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater. 2019;89:126–138. doi: 10.1016/j.actbio.2019.03.004.
    1. Francés-Herrero E., De Miguel-Gómez L., López-Martínez S., Campo H., Garcia-Dominguez X., Diretto G., Faus A., Vicente J.S., Marco-Jiménez F., Cervelló I. Development of Decellularized Oviductal Hydrogels as a Support for Rabbit Embryo Culture. Reprod. Sci. 2021;28:1644–1658. doi: 10.1007/s43032-020-00446-6.
    1. López-Martínez S., Campo H., de Miguel-Gómez L., Faus A., Navarro A.T., Díaz A., Pellicer A., Ferrero H., Cervelló I. A Natural Xenogeneic Endometrial Extracellular Matrix Hydrogel toward Improving Current Human in vitro Models and Future in vivo Applications. Front. Bioeng. Biotechnol. 2021;9:156. doi: 10.3389/fbioe.2021.639688.
    1. Campo H., Baptista P.M., López-Pérez N., Faus A., Cervelló I., Simón C. De- and recellularization of the pig uterus: A bioengineering pilot study. Biol. Reprod. 2016;96:34–45. doi: 10.1095/biolre/bio143396.
    1. Freytes D.O., Martin J., Velankar S.S., Lee A.S., Badylak S.F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29:1630–1637. doi: 10.1016/j.biomaterials.2007.12.014.
    1. Schneider C., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089.
    1. Fitzgerald H.C., Schust D.J., Spencer T. In vitro models of the human endometrium: Evolution and application for women’s health. Biol. Reprod. 2021;104:282–293. doi: 10.1093/biolre/ioaa183.
    1. Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165:1586–1597. doi: 10.1016/j.cell.2016.05.082.
    1. Laganà A.S., Vitale S.G., Salmeri F.M., Triolo O., Frangež H.B., Vrtačnik-Bokal E., Stojanovska L., Apostolopoulos V., Granese R., Sofo V. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med. Hypotheses. 2017;103:10–20. doi: 10.1016/j.mehy.2017.03.032.
    1. Laganà A.S., Garzon S., Götte M., Viganò P., Franchi M., Ghezzi F., Martin D.C. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615.
    1. Crapo P.M., Gilbert T., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057.
    1. O’Neill J.D., Anfang R., Anandappa A., Costa J., Javidfar J., Wobma H.M., Singh G., Freytes D.O., Bacchetta M.D., Sonett J.R., et al. Decellularization of Human and Porcine Lung Tissues for Pulmonary Tissue Engineering. Ann. Thorac. Surg. 2013;96:1046–1056. doi: 10.1016/j.athoracsur.2013.04.022.
    1. Sullivan D.C., Mirmalek-Sani S.-H., Deegan D.B., Baptista P.M., Aboushwareb T., Atala A., Yoo J.J. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–7764. doi: 10.1016/j.biomaterials.2012.07.023.
    1. Baptista P.M., Vyas D., Moran E., Wang Z., Soker S. Human Liver Bioengineering Using a Whole Liver Decellularized Bioscaffold. Adv. Struct. Saf. Stud. 2013;1001:289–298. doi: 10.1007/978-1-62703-363-3_24.
    1. Ott H.C., Matthiesen T.S., Goh S.-K., Black L.D., Kren S.M., Netoff T., Taylor D. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008;14:213–221. doi: 10.1038/nm1684.
    1. Hellström M., El-Akouri R., Sihlbom C., Olsson B., Lengqvist J., Bäckdahl H., Johansson B., Olausson M., Sumitran-Holgersson S., Brännström M. Towards the development of a bioengineered uterus: Comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10:5034–5042. doi: 10.1016/j.actbio.2014.08.018.
    1. DeQuach J.A., Mezzano V., Miglani A., Lange S., Keller G., Sheikh F., Christman K.L. Simple and High Yielding Method for Preparing Tissue Specific Extracellular Matrix Coatings for Cell Culture. PLoS ONE. 2010;5:e13039. doi: 10.1371/journal.pone.0013039.
    1. French K.M., Boopathy A.V., DeQuach J.A., Chingozha L., Lu H., Christman K.L., Davis M.E. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8:4357–4364. doi: 10.1016/j.actbio.2012.07.033.
    1. Young D.A., Choi Y.S., Engler A.J., Christman K.L. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 2013;34:8581–8588. doi: 10.1016/j.biomaterials.2013.07.103.
    1. Zhang X., Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem. Biophys. Res. Commun. 2015;456:938–944. doi: 10.1016/j.bbrc.2014.11.004.
    1. Sackett S.D., Tremmel D.M., Ma F., Feeney A., Maguire R.M., Brown M.E., Zhou Y., Li X., O’Brien C., Li L., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 2018;8:1–16. doi: 10.1038/s41598-018-28857-1.
    1. Su J., Satchell S.C., Shah R.N., Wertheim J.A. Kidney decellularized extracellular matrix hydrogels: Rheological characterization and human glomerular endothelial cell response to encapsulation. J. Biomed. Mater. Res. Part A. 2018;106:2448–2462. doi: 10.1002/jbm.a.36439.
    1. Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009;103:655–663. doi: 10.1002/bit.22361.
    1. Kumar A., Jagannathan N. Cytokeratin: A review on current concepts. Int. J. Orofac. Biol. 2018;2:6. doi: 10.4103/ijofb.ijofb_3_18.
    1. Haider S., Gamperl M., Burkard T.R., Kunihs V., Kaindl U., Junttila S., Fiala C., Schmidt K., Mendjan S., Knöfler M., et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology. 2019;160:2282–2297. doi: 10.1210/en.2019-00314.
    1. Cervelló I., Gil-Sanchis C., Mas A., Delgado-Rosas F., Martínez-Conejero J.A., Galán A., Martínez-Romero A., Martínez S., Navarro I., Ferro J., et al. Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells. PLoS ONE. 2010;5:e10964. doi: 10.1371/journal.pone.0010964.
    1. Valentijn A.J., Palial K., Al-Lamee H., Tempest N., Drury J., Von Zglinicki T., Saretzki G., Murray P., Gargett C.E., Hapangama D.K. SSEA-1 isolates human endometrial basal glandular epithelial cells: Phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum. Reprod. 2013;28:2695–2708. doi: 10.1093/humrep/det285.
    1. Nguyen H.P.T., Xiao L., Deane J.A., Tan K.-S., Cousins F.L., Masuda H., Sprung C.N., Rosamilia A., Gargett C.E. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum. Reprod. 2017;32:2254–2268. doi: 10.1093/humrep/dex289.
    1. Giancotti F.G. Integrin Signaling. Science. 1999;285:1028–1033. doi: 10.1126/science.285.5430.1028.
    1. Tan C.L., Chin T., Tan C.Y.R., Rovito H.A., Quek L.S., Oblong J.E., Bellanger S. Nicotinamide Metabolism Modulates the Proliferation/Differentiation Balance and Senescence of Human Primary Keratinocytes. J. Investig. Dermatol. 2019;139:1638–1647.e3. doi: 10.1016/j.jid.2019.02.005.
    1. Sato T., Stange D.E., Ferrante M., Vries R.G., Van Es J.H., van den Brink S., Van Houdt W.J., Pronk A., Van Gorp J., Siersema P.D., et al. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology. 2011;141:1762–1772. doi: 10.1053/j.gastro.2011.07.050.
    1. Zhu H.-Y., Wang J.-X., Tong X.-M., Xu W.-H., Jiang L.-Y., Jing X.-Y., Yang L.-Y., Zhou F., Zhang S.-Y. Three-dimensional cultures of human endometrial cells on Matrigel mimic in vivo morphology. Chin. Med. J. 2012;125:863–868.
    1. Dundon M., Madden O., Comizzoli P. Three-dimensional culture of endometrial cells from domestic cats: A new in vitro platform for assessing plastic toxicity. PLoS ONE. 2019;14:e0217365. doi: 10.1371/journal.pone.0217365.
    1. Janzen D.M., Cheng D., Schafenacker A.M., Paik D.Y., Goldstein A., Witte O.N., Jaroszewicz A., Pellegrini M., Memarzadeh S. Estrogen and progesterone together expand murine endometrial epithelial progenitor cells. Stem Cells. 2013;31:808–822. doi: 10.1002/stem.1337.
    1. Badylak S.F., Freytes D.O., Gilbert T. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009;5:1–13. doi: 10.1016/j.actbio.2008.09.013.
    1. Výborný K., Vallová J., Kočí Z., Kekulová K., Jiráková K., Jendelová P., Hodan J., Kubinová Š. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-47059-x.
    1. Valdez J., Cook C.D., Ahrens C.C., Wang A.J., Brown A., Kumar M., Stockdale L., Rothenberg D., Renggli K., Gordon E., et al. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials. 2017;130:90–103. doi: 10.1016/j.biomaterials.2017.03.030.
    1. Curley C.J., Dolan E.B., Otten M., Hinderer S., Duffy G.P., Murphy B.P. An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Deliv. Transl. Res. 2018;9:1–13. doi: 10.1007/s13346-018-00601-2.
    1. Stzepourginski I., Nigro G., Jacob J.-M., Dulauroy S., Sansonetti P.J., Eberl G., Peduto L. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc. Natl. Acad. Sci. USA. 2017;114:E506–E513. doi: 10.1073/pnas.1620059114.
    1. Murphy A.R., Wiwatpanit T., Lu Z., Davaadelger B., Kim J.J. Generation of Multicellular Human Primary Endometrial Organoids. J. Vis. Exp. 2019:e60384. doi: 10.3791/60384.
    1. Wiwatpanit T., Murphy A.R., Lu Z., Urbanek M., Burdette J., Woodruff T.K., Kim J.J. Scaffold-Free Endometrial Organoids Respond to Excess Androgens Associated With Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab. 2020;105:769–780. doi: 10.1210/clinem/dgz100.

Source: PubMed

3
Suscribir