Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri

Reem R AlOlaby, Marwa Zafarullah, Mariana Barboza, Gang Peng, Bernard J Varian, Susan E Erdman, Carlito Lebrilla, Flora Tassone, Reem R AlOlaby, Marwa Zafarullah, Mariana Barboza, Gang Peng, Bernard J Varian, Susan E Erdman, Carlito Lebrilla, Flora Tassone

Abstract

Environmental factors such as diet, gut microbiota, and infections have proven to have a significant role in epigenetic modifications. It is known that epigenetic modifications may cause behavioral and neuronal changes observed in neurodevelopmental disabilities, including fragile X syndrome (FXS) and autism (ASD). Probiotics are live microorganisms that provide health benefits when consumed, and in some cases are shown to decrease the chance of developing neurological disorders. Here, we examined the epigenetic outcomes in offspring mice after feeding of a probiotic organism, Lactobacillus reuteri (L. reuteri), to pregnant mother animals. In this study, we tested a cohort of Western diet-fed descendant mice exhibiting a high frequency of behavioral features and lower FMRP protein expression similar to what is observed in FXS in humans (described in a companion manuscript in this same GENES special topic issue). By investigating 17,735 CpG sites spanning the whole mouse genome, we characterized the epigenetic profile in two cohorts of mice descended from mothers treated and non-treated with L. reuteri to determine the effect of prenatal probiotic exposure on the prevention of FXS-like symptoms. We found several genes involved in different neurological pathways being differentially methylated (p ≤ 0.05) between the cohorts. Among the key functions, synaptogenesis, neurogenesis, synaptic modulation, synaptic transmission, reelin signaling pathway, promotion of specification and maturation of neurons, and long-term potentiation were observed. The results of this study are relevant as they could lead to a better understanding of the pathways involved in these disorders, to novel therapeutics approaches, and to the identification of potential biomarkers for early detection of these conditions.

Keywords: ASD; FXS; Lactobacillus reuteri; epigenetics; in utero; methylation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Heat map showing both Groups A (TD) and B (FXS-like symptoms) methylation patterns. As the color gets darker, this means more hypermethylation. The heatmap is showing the β values from 570 significant CpGs. CpGs were hierarchically clustered.
Figure 2
Figure 2
Gene Ontology analysis. Volcano plot of results from enrichment analysis of pathways from Gene Ontology. Z-score is defined as the number of hypermethylated genes minus the number of hypomethylated genes in the pathway, divided by the square root of the number of total genes. A positive Z-score indicates hypermethylation in Group B, while a negative Z-score indicates hypomethylation in Group B. Orange vertical line indicates a p-value of 0.01. Gene sets with a p-value less than 0.01 are labeled with GO ids. The point size shows the number of genes with methylation information in each pathway. BP: biological process: CC: cellular component; MF: molecular function.
Figure 3
Figure 3
Protein–protein interactions network. Protein interactome network for the proteins that were shown to be differentially methylated in FXS-like mouse models compared to controls using the STRING software. All the colored nodes represent the query proteins and first shell of interactions. Each node represents all the proteins produced by a single, protein-coding gene locus. Filled nodes mean that the 3D structure of that protein is known or predicted. The colored lines represent different types of associations. The navy-blue line indicates known interactions from curated databases. The fuchsia lines indicate known interactions that are experimentally determined. The dark green lines represent predicted interactions of neighboring genes, the red lines represent gene fusions, and the royal blue line represents gene co-occurrence. The light green line represents text mining, the black line represents co-expression, and the purple line represents protein homology.
Figure 4
Figure 4
(Top): Boxplot charts showing the differential expression levels of SHANK3, AGAP3, and DLG2 in the two groups of mice. The comparison of expression levels of both SHANK3 and AGAP3, although in the right direction relative to the methylation data, did not reach statistical significance. A significant increased expression of DLG2 was observed in Group B compared to Group A. (Bottom): Western blot of representative brain samples from Groups A and B (n = 4) for all three proteins. GADPH was used as a loading control. * Denotes statistical significance (p-value < 0.05).

References

    1. Rylaarsdam L., Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front. Cell. Neurosci. 2019;13:385. doi: 10.3389/fncel.2019.00385.
    1. Bollati V., Baccarelli A. Environmental epigenetics. Heredity. 2010;105:105–112. doi: 10.1038/hdy.2010.2.
    1. Atladóttir H.Ó., Henriksen T.B., Schendel D.E., Parner E.T. Autism After Infection, Febrile Episodes, and Antibiotic Use During Pregnancy: An Exploratory Study. Pediatrics. 2012;130:e1447–e1454. doi: 10.1542/peds.2012-1107.
    1. Brown A.S., Sourander A., Hinkka-Yli-Salomäki S., McKeague I.W., Sundvall J., Surcel H.-M. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry. 2014;19:259–264. doi: 10.1038/mp.2012.197.
    1. Cornish K.M., Kraan C.M., Bui Q.M., Bellgrove M.A., Metcalfe S.A., Trollor J.N., Hocking D.R., Slater H.R., Inaba Y., Li X., et al. Novel methylation markers of the dysexecutive-psychiatric phenotype in FMR1 premutation women. Neurology. 2015;84:1631–1638. doi: 10.1212/WNL.0000000000001496.
    1. Lu J., Gao F.-H. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed. Rep. 2016;4:657–663. doi: 10.3892/br.2016.642.
    1. Paul B., Barnes S., Demark-Wahnefried W., Morrow C.D., Salvador C., Skibola C.F., Tollefsbol T.O. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin. Epigenet. 2015;7:112. doi: 10.1186/s13148-015-0144-7.
    1. Lee H.-S. The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms. Genom. Inform. 2019;17:e24. doi: 10.5808/GI.2019.17.3.e24.
    1. Schächtle M.A., Rosshart S.P. The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Front. Cell. Neurosci. 2021;15:698172. doi: 10.3389/fncel.2021.698172.
    1. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506. doi: 10.1038/s41422-020-0332-7.
    1. Suganya K., Koo B.-S. Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020;21:7551. doi: 10.3390/ijms21207551.
    1. Choi G.B., Yim Y.S., Kim V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autismlike phenotypes in offspring. Science. 2016;351:933–939. doi: 10.1126/science.aad0314.
    1. Mu Q., Tavella V.J., Luo X.M. Role of Lactobacillus reuteri in Human Health and Diseases. Front. Microbiol. 2018;9:757. doi: 10.3389/fmicb.2018.00757.
    1. Szkaradkiewicz A.K., Stopa J., Karpiński T.M. Effect of Oral Administration Involving a Probiotic Strain of Lactobacillus reuteri on Pro-Inflammatory Cytokine Response in Patients with Chronic Periodontitis. Arch. Immunol. Ther. Exp. 2014;62:495–500. doi: 10.1007/s00005-014-0277-y.
    1. Harris S.W., Hessl D., Goodlin-Jones B., Ferranti J., Bacalman S., Barbato I., Tassone F., Hagerman P.J., Herman K., Hagerman R.J. Autism Profiles of Males With Fragile X Syndrome. Am. J. Ment. Retard. 2008;113:427–438. doi: 10.1352/2008.113:427-438.
    1. Wheeler A.C., Mussey J., Villagomez A., Bishop E., Raspa M., Edwards A., Bodfish J., Bann C., Bailey D.B. DSM-5 Changes and the Prevalence of Parent-Reported Autism Spectrum Symptoms in Fragile X Syndrome. J. Autism Dev. Disord. 2015;45:816–829. doi: 10.1007/s10803-014-2246-z.
    1. Verheij C., Bakker C., De Graaff E., Keulemans J., Willemsen R., Verkerk A.J.M.H., Galjaard H., Reuser A. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature. 1993;363:722–724. doi: 10.1038/363722a0.
    1. Kraan C.M., Hocking D.R., Georgiou-Karistianis N., Metcalfe S.A., Archibald A.D., Fielding J., Trollor J., Bradshaw J.L., Cohen J., Cornish K.M. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol. Aging. 2014;35:2179.e7–2179.e13. doi: 10.1016/j.neurobiolaging.2014.03.018.
    1. Poutahidis T., Varian B.J., Levkovich T., Lakritz J.R., Mirabal S., Kwok C., Ibrahim Y.M., Kearney S.M., Chatzigiagkos A., Alm E.J., et al. Dietary Microbes Modulate Transgenerational Cancer Risk. Cancer Res. 2015;75:1197–1204. doi: 10.1158/0008-5472.CAN-14-2732.
    1. Gujar H., Liang J.W., Wong N.C., Mozhui K. Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. PLoS ONE. 2018;13:e0193496. doi: 10.1371/journal.pone.0193496.
    1. Needhamsen M., Ewing E., Lund H., Gomez-Cabrero D., Harris R.A., Kular L., Jagodic M. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies. BMC Bioinform. 2017;18:486. doi: 10.1186/s12859-017-1870-y.
    1. Fortin J.P., Triche T.J., Hansen K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–560. doi: 10.1093/bioinformatics/btw691.
    1. Du P., Zhang X., Huang C.-C., Jafari N., Kibbe A.W., Hou L., Lin S.M. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010;11:587. doi: 10.1186/1471-2105-11-587.
    1. Classics in the History of Psychology—Fisher (1925) Index. [(accessed on 1 October 2021)]. Available online: .
    1. Lai L., Hennessey J., Bares V., Son E.W., Ban Y., Wang W., Qi J., Jiang G., Liberzon A., Ge S.X. GSKB: A gene set database for pathway analysis in mouse. bioRxiv. 2016:082511. doi: 10.1101/082511.
    1. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074.
    1. Garcia-Prieto C.A., Álvarez-Errico D., Musulen E., Bueno-Costa A., Vazquez B.N., Vaquero A., Esteller M. Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome. Epigenetics. 2022:1–9. doi: 10.1080/15592294.2022.2053816.
    1. Oku Y., Huganir R.L. AGAP3 and Arf6 Regulate Trafficking of AMPA Receptors and Synaptic Plasticity. J. Neurosci. 2013;33:12586–12598. doi: 10.1523/JNEUROSCI.0341-13.2013.
    1. Gross C., Chang C.-W., Kelly S.M., Bhattacharya A., McBride S.M., Danielson S.W., Jiang M.Q., Chan C.B., Ye K., Gibson J.R., et al. Increased Expression of the PI3K Enhancer PIKE Mediates Deficits in Synaptic Plasticity and Behavior in Fragile X Syndrome. Cell Rep. 2016;11:727–736. doi: 10.1016/j.celrep.2015.03.060.
    1. Manuel M.N., Mi D., Mason J.O., Price D.J. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front. Cell. Neurosci. 2015;9:70. doi: 10.3389/fncel.2015.00070.
    1. Jones K.A., Luo Y., Dukes-Rimsky L., Srivastava D.P., Koul-Tewari R., Russell T.A., Shapiro L.P., Srivastava A.K., Penzes P. Neurodevelopmental disorder-associated ZBTB20 gene variants affect dendritic and synaptic structure. PLoS ONE. 2018;13:e0203760. doi: 10.1371/journal.pone.0203760.
    1. Kantarci H., Edlund R.K., Groves A.K., Riley B.B. Tfap2a Promotes Specification and Maturation of Neurons in the Inner Ear through Modulation of Bmp, Fgf and Notch Signaling. PLoS Genet. 2015;11:e1005037. doi: 10.1371/journal.pgen.1005037.
    1. Sun J., Liu Y., Baudry M., Bi X. SK2 channel regulation of neuronal excitability, synaptic transmission, and brain rhythmic activity in health and diseases. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867:118834. doi: 10.1016/j.bbamcr.2020.118834.
    1. Favaro P.D., Huang X., Hosang L., Stodieck S., Cui L., Liu Y.-Z., Engelhardt K.-A., Schmitz F., Dong Y., Löwel S., et al. An opposing function of paralogs in balancing developmental synapse maturation. PLOS Biol. 2018;16:e2006838. doi: 10.1371/journal.pbio.2006838.
    1. Yoo T., Kim S.G., Yang S.H., Kim H., Kim E., Kim S.Y. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol. Autism. 2020;11:19. doi: 10.1186/s13229-020-00324-7.
    1. Ali S., Hoven A., Dress R.J., Schaal H., Alferink J., Scheu S. Identification of a novel Dlg2 isoform differentially expressed in IFNβ-producing plasmacytoid dendritic cells. BMC Genom. 2018;19:194. doi: 10.1186/s12864-018-4573-5.
    1. Dillon G.M., Tyler W.A., Omuro K.C., Kambouris J., Tyminski C., Henry S., Haydar T., Beffert U., Ho A. CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development. Neuron. 2017;93:1344–1358. doi: 10.1016/j.neuron.2017.02.039.
    1. Yang X., Hou D., Jiang W., Zhang C. Intercellular protein–protein interactions at synapses. Protein Cell. 2014;5:420–444. doi: 10.1007/s13238-014-0054-z.
    1. Meyer R., Begemann M., Demuth S., Kraft F., Dey D., Schüler H., Busse S., Häusler M., Zerres K., Kurth I., et al. Inherited cases of CNOT3 -associated intellectual developmental disorder with speech delay, autism, and dysmorphic facies. Clin. Genet. 2020;98:408–412. doi: 10.1111/cge.13819.
    1. Zhang Q., Peng C., Song J., Zhang Y., Chen J., Song Z., Shou X., Ma Z., Peng H., Jian X., et al. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am. J. Hum. Genet. 2017;100:817–823. doi: 10.1016/j.ajhg.2017.03.011.
    1. Zhu L., Wang X., Li X.-L., Towers A., Cao X., Wang P., Bowman R., Yang H., Goldstein J., Li Y.-J., et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum. Mol. Genet. 2014;23:1563–1578. doi: 10.1093/hmg/ddt547.
    1. Kovács R.A., Vadászi H., Bulyáki É., Török G., Tóth V., Mátyás D., Kun J., Hunyadi-Gulyás É., Fedor F.Z., Csincsi Á., et al. Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice. Front. Immunol. 2021;11:599771. doi: 10.3389/fimmu.2020.599771.
    1. Kim S.H., Ryan T.A. Synaptic Vesicle Recycling at CNS Synapses without AP-2. J. Neurosci. 2009;29:3865–3874. doi: 10.1523/JNEUROSCI.5639-08.2009.
    1. Mohn J.L., Alexander J., Pirone A., Palka C.D., Lee S.-Y., Mebane L., Haydon P.G., Jacob M.H. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol. Psychiatry. 2014;19:1133–1142. doi: 10.1038/mp.2014.61.
    1. Carosso G.A., Boukas L., Augustin J.J., Nguyen H.N. Transcriptional suppression from KMT2D loss disrupts cell cycle and hypoxic responses in neurodevelopmental models of Kabuki syndrome. [(accessed on 17 June 2022)];bioRxiv. 2018 :484410. Available online: .
    1. Fatima A., Hoeber J., Schuster J., Koshimizu E., Maya-Gonzalez C., Keren B., Mignot C., Akram T., Ali Z., Miyatake S., et al. Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy. Am. J. Hum. Genet. 2021;108:739–748. doi: 10.1016/j.ajhg.2021.02.015.
    1. Tian W.T., Liu L.-H., Zhou H.-Y., Zhang C., Zhan F.-X., Zhu Z.-Y., Chen S.-D., Luan X.-H., Cao L. New phenotype of DCTN1-related spectrum: Early-onset dHMN plus congenital foot deformity. Ann. Clin. Transl. Neurol. 2020;7:200–209. doi: 10.1002/acn3.50985.
    1. Haldeman-Englert C.R., Hurst A.C., Levine M.A. Disorders of GNAS Inactivation. GeneReviews®. [(accessed on 6 October 2021)];2017 Available online:
    1. Mulhern M.S., Stumpel C., Stong N., Brunner H.G., Bier L., Lippa N., Riviello J., Rouhl R.P.W., Kempers M., Pfundt R., et al. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann. Neurol. 2018;84:788–795. doi: 10.1002/ana.25350.
    1. Megarbane A., Noguier F., Stora S., Manchon L., Mircher C., Bruno R., Dorison N., Pierrat F., Réthoré M.-O., Trentin B., et al. The intellectual disability of trisomy 21: Differences in gene expression in a case series of patients with lower and higher IQ. Eur. J. Hum. Genet. 2013;21:1253–1259. doi: 10.1038/ejhg.2013.24.
    1. Piper M., Dawson A.-L.S., Lindwall C., Barry G., Plachez C., Richards L.J. Emx and Nfi Genes Regulate Cortical Development and Axon Guidance in the Telencephalon. Cortical Dev. Genes Genet. Abnorm. 2008;288:230–245. doi: 10.1002/9780470994030.CH16.
    1. Arnold M., Cross R., Singleton K.S., Zlatic S., Chapleau C., Mullin A.P., Rolle I., Moore C.C., Theibert A., Pozzo-Miller L., et al. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin. Front. Cell. Neurosci. 2016;10:218. doi: 10.3389/fncel.2016.00218.
    1. Marsh A.P.L., Heron D., Edwards T., Quartier A., Galea C., Nava C., Rastetter A., Moutard M.-L., Anderson V., Bitoun P., et al. Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance. Nat. Genet. 2017;49:511–514. doi: 10.1038/ng.3794.
    1. Cerdó T., García-Valdés L., Altmäe S., Ruíz A., Suárez A., Campoy C. Role of microbiota function during early life on child’s neurodevelopment. Trends Food Sci. Technol. 2016;57:273–288. doi: 10.1016/j.tifs.2016.08.007.
    1. Laker R.C., Wlodek M.E., Connelly J., Yan Z. Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. Food Sci. Hum. Wellness. 2013;2:1–11. doi: 10.1016/j.fshw.2013.03.002.
    1. Borre Y.E., O’Keeffe G.W., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014;20:509–518. doi: 10.1016/j.molmed.2014.05.002.
    1. Hornig M., Bresnahan M.A., Che X., Schultz A.F., Ukaigwe J.E., Eddy M.L., Hirtz D., Gunnes N., Lie K.K., Magnus P., et al. Prenatal fever and autism risk. Mol. Psychiatry. 2018;23:759–766. doi: 10.1038/mp.2017.119.
    1. Brown A.S., Conway F. Maternal immune activation and related factors in the risk of offspring psychiatric disorders. Front. Psychiatry. 2019;10:430. doi: 10.3389/fpsyt.2019.00430.
    1. Paraschivescu C., Barbosa S., Lorivel T., Glaichenhaus N., Davidovic L. Cytokine changes associated with the maternal immune activation (MIA) model of autism: A penalized regression approach. PLoS ONE. 2020;15:e0231609. doi: 10.1371/journal.pone.0231609.
    1. Patel S., Dale R.C., Rose D., Heath B., Nordahl C.W., Rogers S., Guastella A.J., Ashwood P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl. Psychiatry. 2020;10:286. doi: 10.1038/s41398-020-00976-2.
    1. Wang X., Yang J., Zhang H., Yu J., Yao Z. Oral probiotic administration during pregnancy prevents autism-related behaviors in offspring induced by maternal immune activation via anti-inflammation in mice. Autism Res. 2019;12:576–588. doi: 10.1002/aur.2079.
    1. Buffington S.A., Dooling S.W., Sgritta M., Noecker C., Murillo O.D., Felice D.F., Turnbaugh P.J., Costa-Mattioli M. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell. 2021;184:1740–1756.e16. doi: 10.1016/j.cell.2021.02.009.
    1. Vuong H.E., Hsiao E.Y. Gut Microbes Join the Social Network. Neuron. 2019;101:196–198. doi: 10.1016/j.neuron.2018.12.035.
    1. Sgritta M., Dooling S.W., Buffington S.A., Momin E.N., Francis M.B., Britton R.A., Costa-Mattioli M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron. 2019;101:246–259.e6. doi: 10.1016/j.neuron.2018.11.018.
    1. Schilling E., El Chartouni C., Rehli M. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res. 2009;19:2028–2035. doi: 10.1101/gr.095562.109.
    1. Agarwal A.K., Tunison K., Dalal J.S., Nagamma S.S., Hamra F.K., Sankella S., Shao X., Auchus R.J., Garg A. Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice. Endocrinology. 2017;158:3954–3973. doi: 10.1210/en.2017-00511.
    1. Jansen S., Van Der Werf I.M., Innes A.M., Afenjar A., Agrawal P.B., Anderson I.J., Atwal P.S., Van Binsbergen E., Boogaard M.-J.V.D., Castiglia L., et al. De novo variants in FBXO11 cause a syndromic form of intellectual disability with behavioral problems and dysmorphisms. Eur. J. Hum. Genet. 2019;27:738–746. doi: 10.1038/s41431-018-0292-2.
    1. Yoshizaki K., Furuse T., Kimura R., Tucci V., Kaneda H., Wakana S., Osumi N. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders. PLoS ONE. 2016;11:e0166665. doi: 10.1371/journal.pone.0166665.
    1. Rasmussen A.H., Rasmussen H.B., Silahtaroglu A. The DLGAP family: Neuronal expression, function and role in brain disorders. Mol. Brain. 2017;10:43. doi: 10.1186/s13041-017-0324-9.
    1. Moessner R., Marshall C.R., Sutcliffe J.S., Skaug J., Pinto D., Vincent J., Zwaigenbaum L., Fernandez B., Roberts W., Szatmari P., et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am. J. Hum. Genet. 2007;81:1289–1297. doi: 10.1086/522590.
    1. Phelan K., McDermid H.E. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome) Mol. Syndr. 2011;2:186–201. doi: 10.1159/000334260.
    1. Soorya L., Kolevzon A., Zweifach J., Lim T., Dobry Y., Schwartz L., Frank Y., Wang A.T., Cai G., Parkhomenko E., et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism. 2013;4:18. doi: 10.1186/2040-2392-4-18.

Source: PubMed

3
Suscribir