Characterization of the skin microbiota in bullous pemphigoid patients and controls reveals novel microbial indicators of disease

Meriem Belheouane, Britt M Hermes, Nina Van Beek, Sandrine Benoit, Philippe Bernard, Kossara Drenovska, Sascha Gerdes, Regine Gläser, Matthias Goebeler, Claudia Günther, Anabelle von Georg, Christoph M Hammers, Maike M Holtsche, Bernhard Homey, Orsolya N Horváth, Franziska Hübner, Beke Linnemann, Pascal Joly, Dalma Márton, Aikaterini Patsatsi, Claudia Pföhler, Miklós Sárdy, Laura Huilaja, Snejina Vassileva, Detlef Zillikens, Saleh Ibrahim, Christian D Sadik, Enno Schmidt, John F Baines, Meriem Belheouane, Britt M Hermes, Nina Van Beek, Sandrine Benoit, Philippe Bernard, Kossara Drenovska, Sascha Gerdes, Regine Gläser, Matthias Goebeler, Claudia Günther, Anabelle von Georg, Christoph M Hammers, Maike M Holtsche, Bernhard Homey, Orsolya N Horváth, Franziska Hübner, Beke Linnemann, Pascal Joly, Dalma Márton, Aikaterini Patsatsi, Claudia Pföhler, Miklós Sárdy, Laura Huilaja, Snejina Vassileva, Detlef Zillikens, Saleh Ibrahim, Christian D Sadik, Enno Schmidt, John F Baines

Abstract

Introduction: Bullous pemphigoid (BP) is the most common autoimmune blistering disease. It predominately afflicts the elderly and is significantly associated with increased mortality. The observation of age-dependent changes in the skin microbiota as well as its involvement in other inflammatory skin disorders suggests that skin microbiota may play a role in the emergence of BP blistering. We hypothesize that changes in microbial diversity associated with BP might occur before the emergence of disease lesions, and thus could represent an early indicator of blistering risk.

Objectives: The present study aims to investigate potential relationships between skin microbiota and BP and elaborate on important changes in microbial diversity associated with blistering in BP.

Methods: The study consisted of an extensive sampling effort of the skin microbiota in patients with BP and age- and sex-matched controls to analyze whether intra-individual, body site, and/or geographical variation correlate with changes in skin microbial composition in BP and/or blistering status.

Results: We find significant differences in the skin microbiota of patients with BP compared to that of controls, and moreover that disease status rather than skin biogeography (body site) governs skin microbiota composition in patients with BP. Our data reveal a discernible transition between normal skin and the skin surrounding BP lesions, which is characterized by a loss of protective microbiota and an increase in sequences matching Staphylococcus aureus, a known inflammation-promoting species. Notably, Staphylococcus aureus is ubiquitously associated with BP disease status, regardless of the presence of blisters.

Conclusion: The present study suggests Staphylococcus aureus may be a key taxon associated with BP disease status. Importantly, we however find contrasting patterns in the relative abundances of Staphylococcus hominis and Staphylococcus aureus reliably discriminate between patients with BP and matched controls. This may serve as valuable information for assessing blistering risk and treatment outcomes in a clinical setting.

Keywords: 16s rRNA gene sequencing; Autoimmune blistering disease; Bullous pemphigoid; Risk factor; Skin microbiota.

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2022. Production and hosting by Elsevier B.V.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Sampling sites for patients with BP and matched controls; Box plots of Shannon (alpha) diversity. 1a. Grey figure represents age-and sex-matched control; orange figure represents a patient with BP. Sites rarely affected by BP include the forehead (purple), upper back (turquoise), and antecubital fossa (dark blue) are represented on both figures. An example perilesional sampling site (red), unaffected contralateral site (yellow) on the patient, and control-matched corresponding site (green) are shown. 1b. Shannon diversity at the ASV-level for sites rarely affected by BP for controls and patients. 1c. Shannon diversity at the ASV-level for patient perilesional, patient contralateral, and control corresponding sites. For box plots: Boxes represent interquartile range between first and third quartiles; horizontal line defines the median. Whiskers represent the 5th and 95th percentiles and values beyond these bounds are considered outliers, marked with black dots. Kruskal-Wallis test applied to analyze site variation. If an overall significant difference was observed, a pairwise Wilcox test was performed; p-values adjusted using the Benjamini-Hochberg method. Significance represented by: * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; **** ≤ 0.0001; ns = not significant. Supplementary Table S6 reports summary statistics.
Fig. 2
Fig. 2
Partial constrained principal coordinate analyses of Bray-Curtis 2a to 2c. Body sites rarely affected by BP. (anova.cca, Full model: p = 0.0009; terms: disease status, body site (constrained inertia = 5.04%, conditioned inertia = 4.5%), study center: p < 0.001; axes: CAP1, CAP2: p = 0.09; 1,000 permutations). 2d to 2f. Patient perilesional, patient contralateral sites, and control corresponding sites. (anova.cca, Full model: p < 0.001; terms: disease status, blistering status, study center: p < 0.001; axes: CAP1, CAP2: p = 0.009; 1,000 permutations; see “ecological and statistical analysis” in Methods). “+” represents centroid. SD: standard deviation. Site abbreviations: Budapest, Hungary (BUD); Düsseldorf, (D), Dresden, (DD), Freiburg, (FR), Lübeck, (HL), Homburg, (HOM), Kiel, (KI), München, (M), Würzburg (WUE), all Germany; Oulu, Finland (OU); Reims, (RE), Rouen, (RO), both France, Sofia, Bulgaria (SO), Thessaloniki, Greece, (TH).
Fig. 3
Fig. 3
Bar plots of mean relative abundance for the ten most important indicator species. 3a. Bar plot showing relative abundance of important indicator species, at the ASV-level, for controls and patients with BP at sites rarely affected by BP [antecubital fossa (AF), forehead (FH), and upper back (UB)]. 3b. Bar plot showing the relative abundances of important indicator species at the ASV-level for patient perilesional, patient contralateral sites, and control-matched corresponding sites. RDP SeqMatch results for the representative ASV sequences are shown in the legend and provided in full in Supplementary Table S4. Supplementary Tables S7, S8 provide statistical parameters for indicator species analyses and summary statistics of all indicator ASVs, respectively.

References

    1. Joly P., Baricault S., Sparsa A., Bernard P., Bédane C., Duvert-Lehembre S., et al. Incidence and Mortality of Bullous Pemphigoid in France. J Investigative Dermatol. 2012;132:1998–2004. doi: 10.1038/jid.2012.35.
    1. Schmidt E., Zillikens D. Pemphigoid diseases. The Lancet. 2013;381:320–332. doi: 10.1016/S0140-6736(12)61140-4.
    1. Beek N., Weidinger A., Schneider S.W., Kleinheinz A., Gläser R., Holtsche M.M., et al. Incidence of pemphigoid diseases in Northern Germany in 2016 – first data from the Schleswig-Holstein Registry of Autoimmune Bullous Diseases. J Eur Acad Dermatol Venereol. 2021;35(5):1197–1202.
    1. Stevens N.E., Cowin A.J., Kopecki Z. Skin Barrier and Autoimmunity—Mechanisms and Novel Therapeutic Approaches for Autoimmune Blistering Diseases of the Skin. Front Immunol. 2019;10 doi: 10.3389/fimmu.2019.01089.
    1. Amber K.T., Murrell D.F., Schmidt E., Joly P., Borradori L. Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management. Clin Rev Allergy Immunol. 2018;54:26–51. doi: 10.1007/s12016-017-8633-4.
    1. Huang S., Haiminen N., Carrieri A.-P., Hu R., Jiang L., Parida L., et al. Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. mSystems. 2020;5(1)
    1. Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A., et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi: 10.1101/gr.131029.111.
    1. Quan C., Chen X.-Y., Li X., Xue F., Chen L.-H., Liu N., et al. Psoriatic lesions are characterized by higher bacterial load and imbalance between Cutibacterium and Corynebacterium. J Am Acad Dermatol. 2020;82:955–961. doi: 10.1016/j.jaad.2019.06.024.
    1. Yerushalmi M., Elalouf O., Anderson M., Chandran V. The skin microbiome in psoriatic disease: A systematic review and critical appraisal | Elsevier Enhanced Reader. J Transl Autoimmunity. 2019;2:100009.
    1. Salava A., Lauerma A. Role of the skin microbiome in atopic dermatitis. Clin Transl Allergy. 2014;4:33. doi: 10.1186/2045-7022-4-33.
    1. Nakamizo S., Egawa G., Honda T., Nakajima S., Belkaid Y., Kabashima K. Commensal bacteria and cutaneous immunity. Semin Immunopathol. 2015;37:73–80. doi: 10.1007/s00281-014-0452-6.
    1. Gao Z., Tseng C.-H., Strober B.E., Pei Z., Blaser M.J., Ahmed N. Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions. PLoS ONE. 2008;3(7):e2719.
    1. O’Neill A.M., Gallo R.L. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6:177. doi: 10.1186/s40168-018-0558-5.
    1. Schwarm C., Gola D., Holtsche M.M., Dieterich A., Bhandari A., Freitag M., et al. German AIBD Study Group, Identification of two novel bullous pemphigoid- associated alleles, HLA-DQA1*05:05 and -DRB1*07:01, in Germans. Orphanet J Rare Dis. 2021;16:228. doi: 10.1186/s13023-021-01863-9.
    1. Liu S.-D., Chen W.-T., Chi C.-C. Association Between Medication Use and Bullous Pemphigoid: A Systematic Review and Meta-analysis. JAMA Dermatol. 2020;156:891–900. doi: 10.1001/jamadermatol.2020.1587.
    1. Försti A.-K., Huilaja L., Schmidt E., Tasanen K. Neurological and psychiatric associations in bullous pemphigoid-more than skin deep? Exp Dermatol. 2017;26:1228–1234. doi: 10.1111/exd.13401.
    1. Srinivas G., Möller S., Wang J., Künzel S., Zillikens D., Baines J.F., et al. Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering. Nat Commun. 2013;4:1–7. doi: 10.1038/ncomms3462.
    1. Miodovnik M., Künstner A., Langan E.A., Zillikens D., Gläser R., Sprecher E., et al. A distinct cutaneous microbiota profile in autoimmune bullous disease patients. Exp Dermatol. 2017 doi: 10.1111/exd.13357.
    1. Feliciani C., Joly P., Jonkman M.F., Zambruno G., Zillikens D., Ioannides D., et al. Management of bullous pemphigoid: the European Dermatology Forum consensus in collaboration with the European Academy of Dermatology and Venereology. Br J Dermatol. 2015;172:867–877. doi: 10.1111/bjd.13717.
    1. Schmidt E., Goebeler M., Hertl M., Sárdy M., Sitaru C., Eming R., et al. S2k guideline for the diagnosis of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges. 2015;13:713–727. doi: 10.1111/ddg.12612.
    1. E. Schmidt, R. Groves, Immunobullous diseases, in: Rook’s Textbook of Dermatology, 9th ed., Wiley-Blackwell, Chichester, UK, 2016: p. 50.01-56.
    1. The Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome, Nature. 486 (2012) 207–214. .
    1. Karstens L., Asquith M., Davin S., Fair D., Gregory W.T., Wolfe A.J., et al. Controlling for Contaminants in Low-Biomass 16S rRNA Gene Sequencing Experiments. mSystems. 2019;4
    1. Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., Schloss P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13.
    1. Davis N.M., Proctor D.M., Holmes S.P., Relman D.A., Callahan B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226. doi: 10.1186/s40168-018-0605-2.
    1. Kong H.H., Segre J.A. The Molecular Revolution in Cutaneous Biology: Investigating the Skin Microbiome. J Investigative Dermatol. 2017;137:e119–e122. doi: 10.1016/j.jid.2016.07.045.
    1. Glassing A., Dowd S.E., Galandiuk S., Davis B., Chiodini R.J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8:24. doi: 10.1186/s13099-016-0103-7.
    1. Salter S.J., Cox M.J., Turek E.M., Calus S.T., Cookson W.O., Moffatt M.F., et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
    1. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
    1. Belheouane M., Vallier M., Čepić A., Chung C.J., Ibrahim S., Baines J.F. Assessing similarities and disparities in the skin microbiota between wild and laboratory populations of house mice. ISME J. 2020;14(10):2367–2380.
    1. McMurdie P.J., Holmes S., Watson M. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8(4):e61217.
    1. Weyrich L.S., Farrer A.G., Eisenhofer R., Arriola L.A., Young J., Selway C.A., et al. Laboratory contamination over time during low-biomass sample analysis. Mol Ecol Res. 2019;19:982–996. doi: 10.1111/1755-0998.13011.
    1. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219.
    1. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Cole J.R., Chai B., Farris R.J., Wang Q., Kulam S.A., McGarrell D.M., et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2005;33:D294–D296. doi: 10.1093/nar/gki038.
    1. Murrell D.F., Daniel B.S., Joly P., Borradori L., Amagai M., Hashimoto T., et al. Definitions and outcome measures for bullous pemphigoid: Recommendations by an international panel of experts. J Am Acad Dermatol. 2012;66(3):479–485.
    1. J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, H. Wagner, Community Ecology Package, 2005. (accessed March 10, 2021).
    1. Cáceres M.D., Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–3574. doi: 10.1890/08-1823.1.
    1. Liaw A., Wiener M. Classification and Regression by randomForest. Newsl R Project. 2002;2:5.
    1. Scholz C.F.P., Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66:4422–4432. doi: 10.1099/ijsem.0.001367.
    1. Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9 doi: 10.1126/scitranslmed.aah4680.
    1. Clausen M.-L., Agner T., Lilje B., Edslev S.M., Johannesen T.B., Andersen P.S. Association of Disease Severity With Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol. 2018;154:293–300. doi: 10.1001/jamadermatol.2017.5440.
    1. Oh J., Byrd A.L., Deming C., Conlan S., Kong H.H., Segre J.A. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64.
    1. McLaughlin J., Watterson S., Layton A.M., Bjourson A.J., Barnard E., McDowell A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms. 2019;7(5):128.
    1. Gribbon E.M., Cunliffe W.J., Holland K.T. Interaction of Propionibacterium acnes with skin lipids in vitro. Microbiology. 1993;139:1745–1751. doi: 10.1099/00221287-139-8-1745.
    1. Nakamura K., O’Neill A.M., Williams M.R., Cau L., Nakatsuji T., Horswill A.R., et al. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep. 2020;10:21237. doi: 10.1038/s41598-020-77790-9.
    1. Shu M., Wang Y., Yu J., Kuo S., Coda A., Jiang Y., et al. Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus. PLoS ONE. 2013;8(2):e55380.
    1. Nakatsuji T., Hata T.R., Tong Y., Cheng J.Y., Shafiq F., Butcher A.M., et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021;27(4):700–709.
    1. Messingham K.N., Cahill M.P., Kilgore S.H., Munjal A., Schlievert P.M., Fairley J.A. TSST-1+Staphylococcus aureus in Bullous pemphigoid. J Invest Dermatol. 2022;142(4):1032–1039.e6.
    1. Chen Y.E., Tsao H. The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol. 2013;69:143–155.e3. doi: 10.1016/j.jaad.2013.01.016.
    1. Hospodsky D., Pickering A.J., Julian T.R., Miller D., Gorthala S., Boehm A.B., et al. Hand bacterial communities vary across two different human populations. Microbiology. 2014;160:1144–1152. doi: 10.1099/mic.0.075390-0.
    1. Blaser M.J., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Estrada I., et al. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J. 2013;7:85–95. doi: 10.1038/ismej.2012.81.
    1. Rehman A., Rausch P., Wang J., Skieceviciene J., Kiudelis G., Bhagalia K., et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut. 2016;65:238–248. doi: 10.1136/gutjnl-2014-308341.

Source: PubMed

3
Suscribir