Peptide Enhanced Bone Graft Substitute Presents Improved Short-Term Increase in Bone Volume and Construct Stiffness Compared to Iliac Crest Autologous Bone in an Ovine Lumbar Interbody Fusion Model

Arjan C Y Loenen, Jerome Connor, Scott Johnson, Katherine Davis, Nolan Hannigan, Tristan Barnes, Jacobus J Arts, Bert van Rietbergen, Arjan C Y Loenen, Jerome Connor, Scott Johnson, Katherine Davis, Nolan Hannigan, Tristan Barnes, Jacobus J Arts, Bert van Rietbergen

Abstract

Study design: Preclinical ovine model.

Objective: To assess the in vivo efficacy and safety of the P-15 L bone graft substitute and compare its performance to autologous iliac crest bone graft (ICBG) for lumbar interbody fusion indications.

Methods: Thirty skeletally mature sheep underwent lumbar interbody fusion surgery. Half of the sheep received autologous ICBG and the other half the peptide enhanced bone graft substitute (P-15 L). Following termination at 1, 3, and 6 months after surgery, the operated segments were analyzed using micro computed tomography (µCT), histology, and destructive mechanical testing. Additional systemic health monitoring was performed for the P-15 L group.

Results: One month after surgery, there was only minor evidence of bone remodeling and residual graft material could be clearly observed within the cage. There was active bone remodeling between 1 and 3 months after surgery. At 3 months after surgery significantly denser and stiffer bone was found in the P-15 L group, whereas at 6 months, P-15 L and ICBG gave similar fusion results. The P-15 L bone graft substitute did not have any adverse effects on systemic health.

Conclusions: The drug device combination P-15 L was demonstrated to be effective and save for lumbar interbody fusion as evidenced by this ovine model. Compared to autologous ICBG, P-15 L seems to expedite bone formation and remodeling but in the longer-term fusion results were similar.

Keywords: bone graft substitute; lumbar interbody fusion; morphological analysis; ovine; p-15 peptide.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
Sagittal cut of the 3D rendered segmentation of a representative sample of the 1 month cohort. The regions excluded due to metal artifacts are greyed out. (a) The artifact-free region of the graft window in green and the unaffected cancellous bone reference regions in cyan. (b) Both regions of the graft window were exteriorly propagated to ensure a uniform height of 4 millimeters for the μFE analysis.
Figure 2.
Figure 2.
Sagittal μCT and histology cuts of both groups 1, 3, and 6 months after surgery. Residual P-15L graft can be recognized as hyper-opaque particles in μCT scans. For both groups, marker artifacts obscure the central region of the cage in the scans. Corresponding histological sections reveal there are no unexpected deviations in these artifact regions.
Figure 3.
Figure 3.
Changes over time in morphological parameters of the bone within the graft window and associated stiffness as determined by μFE. Time points marked with a star (*) indicate a significant difference between the P-15L and ICBG group. Morphological parameters of unaffected cancellous bone are shown as reference (REF). Abbreviations: BV/TV, bone volume over total volume; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; Conn.D, connectivity density.

References

    1. Walker BF. The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord. 2000;13(3):205–217. doi:10.1097/00002517-200006000-00003
    1. Hoy D, Bain C, Williams G, et al. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012;64(6):2028–2037. doi:10.1002/art.34347
    1. Fritzell P, Hägg O, Wessberg P, Nordwall A. 2001 Volvo award winner in clinical studies: lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976). 2001;26(23):2521–2532; discussion 2532-4. doi:10.1097/00007632-200112010-00002
    1. Kraft CN, Krauspe R. Spondylolisthesis. In: Boos N, Aebi M, eds. Spinal Disorders: Fundamentals of Diagnosis and Treatment. Springer Berlin Heidelberg; 2008:733–763. doi:10.1007/978-3-540-69091-7_27
    1. Bhalla A, Schoenfeld AJ, George J, Moghimi M, Bono CM. The influence of subgroup diagnosis on radiographic and clinical outcomes after lumbar fusion for degenerative disc disorders revisited: a systematic review of the literature. Spine J. 2017;17(1):143–149. doi:10.1016/j.spinee.2016.09.021
    1. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012;37(1):67–76. doi:10.1097/BRS.0b013e31820cccfb
    1. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices. 2006;3(1):49–57. doi:10.1586/17434440.3.1.49
    1. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71(4):677–680. doi:10.1302/0301-620x.71b4.2768321
    1. Hsu WK, Nickoli MS, Wang JC, et al. Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J. 2012;2(4):239–248. doi:10.1055/s-0032-1315454
    1. Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive agents in spinal fusion. Tissue Eng Part B Rev. 2017;23(6):540–551. doi:10.1089/ten.TEB.2017.0072
    1. Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem. 1994;218(1):87–91. doi:10.1006/abio.1994.1144
    1. Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N. Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng. 1999;5(1):53–65. doi:10.1089/ten.1999.5.53
    1. Bhatnagar RS, Qian JJ, Gough CA. The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: structural and biological evidence for conformational tautomerism on fiber surface. J Biomol Struct Dyn. 1997;14(5):547–560. doi:10.1080/07391102.1997.10508155
    1. Qian JJ, Bhatnagar RS. Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. J Biomed Mater Res. 1996;31(4):545–554. doi:10.1002/(sici)1097-4636(199608)31:4<545:: Aid-jbm15>;2-f
    1. Kübler A, Neugebauer J, Oh JH, Scheer M, Zöller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent. 2004;13(2):171–179. doi:10.1097/01.id.0000127522.14067.11
    1. Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng. 2004;10(7-8):1148–1159. doi:10.1089/ten.2004.10.1148
    1. Gomar F, Orozco R, Villar JL, Arrizabalaga F.P-15 small peptide bone graft substitute in the treatment of non-unions and delayed union. A pilot clinical trial. Int Orthop. 2007;31(1):93–99. doi:10.1007/s00264-006-0087-x
    1. Sherman BP, Lindley EM, Turner AS, et al. Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. Eur Spine J. 2010;19(12):2156–2163. doi:10.1007/s00586-010-1546-z
    1. Mobbs RJ, Maharaj M, Rao PJ. Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. J Neurosurg Spine. 2014;21(6):867–876. doi:10.3171/2014.9.spine131151
    1. Lauweryns P, Raskin Y. Prospective analysis of a new bone graft in lumbar interbody fusion: results of a 2- year prospective clinical and radiological study. Int J Spine Surg. 2015;9:2. doi:10.14444/2002
    1. Jacobsen MK, Andresen AK, Jespersen AB, et al. Randomized double blind clinical trial of ABM/P-15 versus allograft in noninstrumented lumbar fusion surgery. Spine J. 2020;20(5):677–684. doi:10.1016/j.spinee.2020.01.009
    1. Arnold PM, Sasso RC, Janssen ME, et al. Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded food and drug administration investigational device exemption study. Spine (Phila Pa 1976). 2016;41(13):1075–1083. doi:10.1097/brs.0000000000001466
    1. Arnold PM, Sasso RC, Janssen ME, et al. i-Factor™ bone graft vs autograft in anterior cervical discectomy and fusion: 2-year follow-up of the randomized single-blinded food and drug administration investigational device exemption study. Neurosurgery. 2018;83(3):377–384. doi:10.1093/neuros/nyx432
    1. ISO. Biological evaluation of medical devices—part 6: tests for local effects after implantation. International Standardization Organization. 2007;10993-6(E).
    1. Walsh WR, Pelletier MH, Bertollo N, Christou C, Tan C. Does PEEK/HA enhance bone formation compared with peek in a sheep cervical fusion model? Clin Orthop Relat Res. 2016;474(11):2364–2372. doi:10.1007/s11999-016-4994-x
    1. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11. doi:10.1002/jbmr.5650040103
    1. van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 1995;28(1):69–81. doi:10.1016/0021-9290(95)80008-5
    1. Brantigan JW, Steffee AD. A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine (Phila Pa 1976). 1993;18(14):2106–2107. doi:10.1097/00007632-199310001-00030
    1. Steffen T, Stoll T, Arvinte T, Schenk RK. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur Spine J. 2001;10(2):S132–S140. doi:10.1007/s005860100325
    1. Santos ER, Goss DG, Morcom RK, Fraser RD. Radiologic assessment of interbody fusion using carbon fiber cages. Spine (Phila Pa 1976). 2003;28(10):997–1001. doi:10.1097/01.Brs.0000061988.93175.74
    1. Smit TH, Muller R, van Dijk M, Wuisman PI. Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness. Spine (Phila Pa 1976). 2003;28(16):1802–1808; discussion 1809. doi:10.1097/01.Brs.0000083285.09184.7a

Source: PubMed

3
Suscribir