Pregnane X Receptor‒4β-Hydroxycholesterol Axis in the Regulation of Overweight- and Obesity-Induced Hypertension

Roosa Rahunen, Outi Kummu, Vesa Koivukangas, Heidi Hautajärvi, Jukka Hakkola, Jaana Rysä, Janne Hukkanen, Roosa Rahunen, Outi Kummu, Vesa Koivukangas, Heidi Hautajärvi, Jukka Hakkola, Jaana Rysä, Janne Hukkanen

Abstract

Background Mechanisms mediating hypertensive effects of overweight and obesity have not been fully elucidated. We showed previously that activation of pregnane X receptor (PXR) by rifampicin elevates 24-hour blood pressure (BP) and plasma 4β-hydroxycholesterol (4βHC), agonist for liver X receptor (LXR). Methods and Results In combined "PXR activation data set" (n=62) of 4 clinical trials, 1 week rifampicin dosing increased office systolic BP (SBP) by 3.1 mm Hg, DBP 1.8 mm Hg, and mean arterial pressure 2.2 mm Hg in comparison with placebo (P<0.01). Plasma 4βHC had negative correlation with SBP both in rifampicin (r=-0.46, P=0.0002) and placebo (r=-0.45, P=0.0003) arms, although 4βHC was elevated >3-fold by rifampicin. In "non-intervention data set" (n=102) of patients with obesity and healthy volunteers (body mass index, 19.2-55.2 kg/m2), 4βHC had negative correlations (P<0.00001) with office SBP (r=-0.51), diastolic BP (r=-0.50), and mean arterial pressure (r=-0.54). Lean women had higher 4βHC than men, with increasing weight repressing 4βHC (r=-0.62, P<0.00001) in both sexes. In multiple linear regression analysis, the only statistically significant predictor for SBP was 4βHC. Six-day PXR agonist dosing elevated SBP in rats (n=7-8/group). PXR activation elevated 4βHC and after PXR agonist was withdrawn and elevated 4βHC was left to act alone, SBP was reduced on days 7 to 14 in comparison with control rats. Conclusions PXR activation elevates SBP. Elevated circulating 4βHC lowers SBP in rats, and higher 4βHC is an independent predictor of lower SBP in humans. PXR-4βHC-LXR is novel BP-regulating pathway deregulated in overweight and obesity by repressed 4βHC, with implications for sex-specific BP regulation. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00985270, NCT01293422, NCT01690104, NCT02329405, and NCT01330251.

Keywords: 4β‐hydroxycholesterol; blood pressure; liver X receptor; obesity; pregnane X receptor.

Figures

Figure 1. Effect of the treatment with…
Figure 1. Effect of the treatment with 600 mg rifampicin or placebo once daily for 1 week on blood pressure and blood pressure‐regulating factors in healthy volunteers of the “pregnane X receptor activation data set” (n=62, except for 4β‐hydroxycholesterol analysis n=61).
Center line, mean; box limits, upper and lower quartiles; whiskers, minimum and maximum values. 4βHC indicates 4β‐hydroxycholesterol; and BP, blood pressure.
Figure 2. Correlation between plasma 4β‐hydroxycholesterol and…
Figure 2. Correlation between plasma 4β‐hydroxycholesterol and systolic blood pressure in the rifampicin and placebo arms in healthy volunteers of the “pregnane X receptor activation data set” (n=61).
Pearson correlation coefficients were calculated to analyze the correlation of 4β‐hydroxycholesterol with systolic blood pressure. 4βHC indicates 4β‐hydroxycholesterol; and BP, blood pressure.
Figure 3. The factors affecting plasma 4β‐hydroxycholesterol…
Figure 3. The factors affecting plasma 4β‐hydroxycholesterol concentration.
A, Predictors for 4β‐hydroxycholesterol in multiple linear regression analysis in the “non‐intervention data set” including healthy volunteers and patients with obesity (n=102). B, Individual 4β‐hydroxycholesterol values in 4 body mass index ranges according to sex. Values in the bar graphs are represented as means±SD. *P<0.001, unpaired 2‐tailed Student t‐test. 4βHC indicates 4β‐hydroxycholesterol; and BMI, body mass index. Bold indicates statistically significant factors in the final model.
Figure 4. Correlation of plasma 4β‐hydroxycholesterol with…
Figure 4. Correlation of plasma 4β‐hydroxycholesterol with (A) systolic blood pressure and (B) body mass index in the “non‐intervention data set” including healthy volunteers and patients with obesity (n=102).
Pearson correlation coefficients were calculated to analyze the correlation of 4βHC with systolic blood pressure and body mass index. Values in the bar graphs are represented as means±SD. 4βHC indicates 4β‐hydroxycholesterol; BP, blood pressure; and BMI, body mass index.
Figure 5. Effect of intraperitoneal pregnenolone 16α‐carbonitrile…
Figure 5. Effect of intraperitoneal pregnenolone 16α‐carbonitrile vs vehicle control for 6 days on incremental systolic blood pressure, mean arterial pressure, diastolic blood pressure, and heart rate in rats followed for total of 14 days.
Pregnenolone 16α‐carbonitrile dosing increased systolic blood pressure during the first 3 days (P=0.029, see Table 4). After pregnenolone 16α‐carbonitrile was withdrawn and elevated 4β‐hydroxycholesterol was left to act alone (days 7–14), systolic blood pressure and heart rate were lowered (P=0.040 and 0.014, respectively, see Table 4). Mann‐Whitney U test was the statistical test used. Values are represented as means±SD. 4βHC indicates 4β‐hydroxycholesterol; BP, blood pressure; i.p., intraperitoneal; MAP, mean arterial pressure; and PCN, pregnenolone 16α‐carbonitrile.

References

    1. WHO . Obesity and overweight. 2021. Available at: , URL: . Accessed October 12, 2021.
    1. Liu B, Du Y, Wu Y, Snetselaar LG, Wallace RB, Bao W. Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011–18: population based study. BMJ. 2021;372:n365.–10.1136/bmj.n365
    1. GBD 2015 Risk Factors Collaborators . Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–1724. doi: 10.1016/S0140-6736(16)31679-8
    1. Jones DW, Kim JS, Andrew ME, Kim SJ, Hong YP. Body mass index and blood pressure in Korean men and women: the Korean National Blood Pressure Survey. J Hypertens. 1994;12:1433–1437. doi: 10.1097/00004872-199412000-00018
    1. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity‐induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006. doi: 10.1161/CIRCRESAHA.116.305697
    1. Diczfalusy U, Nylén H, Elander P, Bertilsson L. 4β‐Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol. 2011;71:183–189. doi: 10.1111/j.1365-2125.2010.03773.x
    1. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9:310–322.
    1. Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038
    1. Oladimeji PO, Chen T. PXR: more than just a master xenobiotic receptor. Mol Pharmacol. 2018;93:119–127. doi: 10.1124/mol.117.110155
    1. Karpale M, Käräjämäki AJ, Kummu O, Gylling H, Hyötyläinen T, Orešič M, Tolonen A, Hautajärvi H, Savolainen MJ, Ala‐Korpela M, et al. Activation of nuclear receptor PXR induces atherogenic lipids and PCSK9 through SREBP2‐mediated mechanism. Br J Pharmacol. 2021;178:2461–2481 doi: 10.1111/bph.15433
    1. Hukkanen J, Hakkola J. PXR and 4β‐hydroxycholesterol axis and the components of metabolic syndrome. Cells. 2020;9:2445. doi: 10.3390/cells9112445
    1. Hassani‐Nezhad‐Gashti F, Salonurmi T, Hautajärvi H, Rysä J, Hakkola J, Hukkanen J. Pregnane X receptor activator rifampin increases blood pressure and stimulates plasma renin activity. Clin Pharmacol Ther. 2020;108:856–865. doi: 10.1002/cpt.1871
    1. Hagedorn KA, Cooke CL, Falck JR, Mitchell BF, Davidge ST. Regulation of vascular tone during pregnancy: a novel role for the pregnane X receptor. Hypertension. 2007;49:328–333. doi: 10.1161/01.HYP.0000253478.51950.27
    1. Pulakazhi Venu VK, Saifeddine M, Mihara K, Tsai YC, Nieves K, Alston L, Mani S, McCoy KD, Hollenberg MD, Hirota SA. The pregnane X receptor and its microbiota‐derived ligand indole 3‐propionic acid regulate endothelium‐dependent vasodilation. Am J Physiol Endocrinol Metab. 2019;317:E350–E361. doi: 10.1152/ajpendo.00572.2018
    1. Salonurmi T, Nabil H, Ronkainen J, Hyötyläinen T, Hautajärvi H, Savolainen MJ, Tolonen A, Orešič M, Känsäkoski P, Rysä J, et al. 4β‐hydroxycholesterol signals from the liver to regulate peripheral cholesterol transporters. Front Pharmacol. 2020;11:361. doi: 10.3389/fphar.2020.00361
    1. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383:728–731.
    1. Cannon MV, van Gilst WH, de Boer RA. Emerging role of liver X receptors in cardiac pathophysiology and heart failure. Basic Res Cardiol. 2016;111:3–7. doi: 10.1007/s00395-015-0520-7
    1. Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther. 2013;93:556–563. doi: 10.1038/clpt.2013.48
    1. Hukkanen J, Rysa J, Makela KA, Herzig KH, Hakkola J, Savolainen MJ. The effect of pregnane X receptor agonists on postprandial incretin hormone secretion in rats and humans. J Physiol Pharmacol. 2015;66:831–839.
    1. Härma MA, Adeshara K, Istomin N, Lehto M, Blaut M, Savolainen MJ, Hörkkö S, Groop PH, Koivukangas V, Hukkanen J. Gastrointestinal manifestations after Roux‐en‐Y gastric bypass surgery in individuals with and without type 2 diabetes. Surg Obes Relat Dis. 2020;17:585–594. doi: 10.1016/j.soard.2020.10.021
    1. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1:94–99. doi: 10.4103/0976-500X.72351
    1. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9
    1. Hautajärvi H, Hukkanen J, Turpeinen M, Mattila S, Tolonen A. Quantitative analysis of 4β‐ and 4α‐hydroxycholesterol in human plasma and serum by UHPLC/ESI‐HR‐MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1100–1101:179–186. doi: 10.1016/j.jchromb.2018.09.028
    1. Soininen P, Kangas AJ, Würtz P, Tukiainen T, Tynkkynen T, Laatikainen R, Järvelin M‐R, Kähönen M, Lehtimäki T, Viikari J, et al. High‐throughput serum NMR metabonomics for cost‐effective holistic studies on systemic metabolism. Analyst. 2009;134:1781–1785. doi: 10.1039/b910205a
    1. Lamba J, Hebert JM, Schuetz EG, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012;22:555–558. doi: 10.1097/FPC.0b013e328351d47f
    1. Hernandez JP, Mota LC, Baldwin WS. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Curr Pharmacogenomics Person Med. 2009;7:81–105.
    1. Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol. 2020;94:3671–3722. doi: 10.1007/s00204-020-02936-7
    1. Swales KE, Moore R, Truss NJ, Tucker A, Warner TD, Negishi M, Bishop‐Bailey D. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovasc Res. 2012;93:674–681. doi: 10.1093/cvr/cvr330
    1. Imig JD. Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension. 2015;65:476–482. doi: 10.1161/HYPERTENSIONAHA.114.03585
    1. Wang X, Fang X, Zhou J, Chen Z, Zhao B, Xiao L, Liu A, Li Y‐S J, Shyy J Y‐J, Guan Y, et al. Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proc Natl Acad Sci USA. 2013;110:13174–13179. doi: 10.1073/pnas.1312065110
    1. Moldavski O, Zushin P‐J, Berdan CA, Van Eijkeren RJ, Jiang X, Qian M, Ory DS, Covey DF, Nomura DK, Stahl A, et al. 4β‐Hydroxycholesterol is a prolipogenic factor that promotes SREBP1c expression and activity through the liver X receptor. J Lipid Res. 2021;62:100051. doi: 10.1016/j.jlr.2021.100051
    1. Kuipers I, van der Harst P, Kuipers F, van Genne L, Goris M, Lehtonen JY, van Veldhuisen DJ, van Gilst WH, de Boer RA. Activation of liver X receptor‐alpha reduces activation of the renal and cardiac renin‐angiotensin‐aldosterone system. Lab Invest. 2010;90:630–636.
    1. Leik CE, Carson NL, Hennan JK, Basso MD, Liu QY, Crandall DL, Nambi P. GW3965, a synthetic liver X receptor (LXR) agonist, reduces angiotensin II‐mediated pressor responses in Sprague‐Dawley rats. Br J Pharmacol. 2007;151:450–456. doi: 10.1038/sj.bjp.0707241
    1. Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel‐Yilmaz E. The effects of LXR agonist GW3965 on vascular reactivity and inflammation in hypertensive rat aorta. Life Sci. 2018;213:287–293. doi: 10.1016/j.lfs.2018.10.042
    1. Bal NB, Han S, Usanmaz SE, Kiremitci S, Sadi G, Uludag O, Demirel‐Yilmaz E. Activation of liver X receptors by GW3965 attenuated deoxycorticosterone acetate‐salt hypertension‐induced cardiac functional and structural changes. J Cardiovasc Pharmacol. 2019;74:105–117. doi: 10.1097/FJC.0000000000000693
    1. Kim AH, Kim B, Rhee S‐J, Lee Y, Park JS, Lee SM, Kim SM, Lee SH, Yu K‐S, Jang I‐J, et al. Assessment of induced CYP3A activity in pregnant women using 4β‐hydroxycholesterol: cholesterol ratio as an appropriate metabolic marker. Drug Metab Pharmacokinet. 2018;33:173–178. doi: 10.1016/j.dmpk.2018.04.004
    1. Taguchi R, Naito T, Kubono N, Ogawa N, Itoh H, Kawakami J. Relationships between endogenous CYP3A markers and plasma amlodipine exposure and metabolism in early postpartum and non‐peripartum women with hypertension. Pregnancy Hypertens. 2019;17:209–215. doi: 10.1016/j.preghy.2019.07.002
    1. Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, Diczfalusy U. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β‐hydroxycholesterol. Eur J Clin Pharmacol. 2011;67:715–722. doi: 10.1007/s00228-010-0984-1
    1. Moon JY, Moon MH, Kim KT, Jeong DH, Kim YN, Chung BC, Choi MH. Cytochrome P450‐mediated metabolic alterations in preeclampsia evaluated by quantitative steroid signatures. J Steroid Biochem Mol Biol. 2014;139:182–191. doi: 10.1016/j.jsbmb.2013.02.014
    1. Valbuena‐Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez‐Nuñez M, Llano E, Pendas AM, Díaz M, Castrillo A, Lopez‐Novoa JM, et al. Oxysterol‐induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126:2612–2624. doi: 10.1161/CIRCULATIONAHA.112.101261
    1. Weedon‐Fekjær MS, Johnsen GM, Anthonisen EH, Sugulle M, Nebb HI, Duttaroy AK, Staff AC. Expression of liver X receptors in pregnancies complicated by preeclampsia. Placenta. 2010;31:818–824. doi: 10.1016/j.placenta.2010.06.015
    1. Muiesan ML, Salvetti M, Rosei CA, Paini A. Gender differences in antihypertensive treatment: myths or legends? High Blood Press Cardiovasc Prev. 2016;23:105–113. doi: 10.1007/s40292-016-0148-1
    1. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, Cheng S. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5:19–26. doi: 10.1001/jamacardio.2019.5306
    1. Faulkner JL, Belin de Chantemèle EJ. Sex differences in mechanisms of hypertension associated with obesity. Hypertension. 2018;71:15–21. doi: 10.1161/HYPERTENSIONAHA.117.09980
    1. Shariq OA, McKenzie TJ. Obesity‐related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020;9:80–93. doi: 10.21037/gs.2019.12.03
    1. Zhao YC, Zhao GJ, Chen Z, She ZG, Cai J, Li H. Nonalcoholic fatty liver disease: an emerging driver of hypertension. Hypertension. 2020;75:275–284. doi: 10.1161/HYPERTENSIONAHA.119.13419
    1. Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A activity and expression in nonalcoholic fatty liver disease. Drug Metab Dispos. 2015;43:1484–1490. doi: 10.1124/dmd.115.065979
    1. Xi B, Wang C, Liu L, Zeng T, Liang Y, Li J, Mi J. Association of the CYP3A5 polymorphism (6986G>A) with blood pressure and hypertension. Hypertens Res. 2011;34:1216–1220.
    1. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–1340. doi: 10.1161/HYPERTENSIONAHA.115.05315
    1. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20–32. doi: 10.1038/nrcardio.2017.120
    1. Lau YY, Huang Y, Frassetto L, Benet LZ. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 2007;81:194–204. doi: 10.1038/sj.clpt.6100038

Source: PubMed

3
Suscribir