Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure

Fangyuan Wang, Li Wang, Xiaofen Yao, Dongmei Lai, Lihe Guo, Fangyuan Wang, Li Wang, Xiaofen Yao, Dongmei Lai, Lihe Guo

Abstract

Introduction: Ovarian dysfunction frequently occurs in female cancer patients after chemotherapy, but human amniotic epithelial cells (hAECs) that can differentiate into cell types that arise from all three germ layers may offer promise for restoration of such dysfunction. Previous studies confirmed that hAECs could differentiate into cells that express germ cell-specific markers, but at this time hAECs have not been shown to restore ovarian function.

Methods: To model premature ovarian failure, hAECs infected with lenti-virus carrying green fluorescent protein were injected into the tail vein of mice sterilized with cyclophosphamide and busulphan. hAECs migrated to the mouse ovaries and overall ovarian function was measured using immunohistochemical techniques.

Results: Seven days to two months after hAECs transplantation, ovarian cells were morphologically restored in sterilized mice. Hemotoxylin and eosin staining revealed that restored ovarian cells developed follicles at all stages. No follicles were observed in control mice at the same time period. Immunostaining with anti-human antigen antibodies and pre-transplantation labeling with green fluorescent protein (GFP) revealed that the grafted hAECs survived and migrated to mouse ovary, differentiating into granulosa cells. Furthermore, the ovarian function marker, anti-Müllerian hormone, was evident in treated mouse ovaries after hAEC transplantation.

Conclusions: Intravenously injected hAECs reached the ovaries of chemotherapy-treated mice and restored folliculogenesis, data which suggest promise for hAECs for promoting reproductive health and improving the quality of life for female cancer survivors.

Figures

Figure 1
Figure 1
Human amniotic epithelial cells (hAECs) did not express germ-cell-specific genes. (A) Quantitative PCR was used to analyze germ-cell-specific expression in hAECs. CT values were expressed as a percentage of 18S RNA (18S = 100%) and used to calculate mean normalized expression relative to 18S. Results are shown as mean and standard deviation of three experiments. (B) Immunofluorescence analysis of germ-cell-specific genes in hAECs. Note that hAECs expressed OCT4 (red), NANOG (green) and CD117 (green), but did not express DAZL, STELLA or VASA. DAPI staining for nuclei. Scale bars = 50 μm.
Figure 2
Figure 2
Transplantation of GFP-transfected hAECs into sterilized recipient mice and the follicle activation induced by hAECs transplantation. (A) hAECs cells grown to 85% density. (B) GFP-transfected hAECs. Representative H&E micrographs of ovary sections from: non-sterilized normal control mice (C, D); sterilized non-transplanted mice after a 7-day recovery period (E), a 14-day recovery period (F), a 21-day recovery period (G) and a 2-month recovery period (H) showing stroma, and atretic primordial or primary follicles; sterilized recipient mice 7 days (I), 14 days (J), 21 days (K) and 2 months (L) after transplantation of hAECs. No obvious follicles were observed in recipients seven days after hAEC transplantation (I); however, the hollow structure destroyed by chemotherapy was reduced and obviously compared with (E). Primordial follicles are visible in J, primary follicles were visible in K and large antral follicles are shown in L. Arrows indicated follicles at various stages of maturational development. Scale bars = 100 μm. (M). Differential follicle counts of primordial, primary, secondary and atretic follicles in ovaries of each groups. NC, Normal control; UC, Untreated control; hAECs, hAECs transplantation group. GFP, Green fluorescent protein; hAECs, Human amniotic epithelial cells.
Figure 3
Figure 3
Macroscopic appearance of recipient ovaries seven days to two months after transplantation with GFP-transfected hAECs. (A-F) GFP staining dots shown in recipient ovaries 7 to 14 days after transplantation with GFP-transfected hAECs, whereas no GFP signal was observed in follicles. Follicles containing GFP-positive (green) cells were shown in recipient ovaries 21 days (G-I), 28 days (J-L) and 2 months (M-R) after transplantation with GFP-transfected hAECs. (S-U) Oocytes in recipients without hAECs transplantation had no GFP signal after a two-month recovery period. Arrows indicate the GFP distribution pattern in ovaries. Blue, DAPI immunofluorescence. Scale bars, 200 μm (S-U), 100 μm (A-R). GFP, Green fluorescent protein; hAECs, Human amniotic epithelial cells.
Figure 4
Figure 4
Double-staining with GFP and human nuclear antigen to observe GFP-positive cells after hAECs transplantation. (A-F) Ovarian sections stained with GFP and anti-human nuclear antibody reveal grafted hAECs 28 days after hAEC transplantation. (G-L) GFP staining co-localized with human nuclear antigen in antral follicles of recipient ovaries two months after hAEC transplantation. Arrows indicate a double-staining pattern in ovaries. Scale bars, 200 μm (G-L), 100 μm (A-F). GFP, Green fluorescent protein; hAECs, human amniotic epithelial cells.
Figure 5
Figure 5
Grafted cells detected by immunochemistry against human antigens. (A) Human specific nuclear antigen expression was negative in recipient ovaries without hAECs transplantation. (B) Human nuclear antigen was not detected in some recipient ovaries two months after hAEC transplantation. (C, D) Human nuclear antigen was expressed in antral follicles in recipient ovaries two months after hAEC transplantation. (E) Human FSHR was not detected in recipient ovaries without hAEC transplantation. (F) Human FSHR was not detected in some recipient ovaries two months after hAEC transplantation. (G, H) Human FSHR were detected in recipient ovaries two months after hAEC transplantation. Arrows indicate human antigen expression in granulosa cells surrounding the ovum, whereas other granulosa cells were negative controls. Scale bars = 100 μm. hAECs, human amniotic epithelial cells.
Figure 6
Figure 6
AMH expression in recipient mouse ovaries. (A) AMH was expressed in all granulosa cells of primary, preantral and small antral follicles in normal ovaries. (B) AMH expression disappeared in stromal and atretic follicles in recipients ovaries without hAECs transplantation two months after chemotherapy. (C) AMH expression was negative in recipient ovaries seven days after hAEC transplantation. However, AMH expressions were detected in recipient ovaries after hAEC transplantation for 14 days (D) and 21 days (E). (F) AMH expression patterns are strong in recipient ovaries two months after hAEC transplantation; data are consistent with that from control normal ovaries. Scale bars = 100 μm. AMH, Anti-Müllerian hormone; hAEC, human amniotic epithelial cell.

References

    1. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:535–543. doi: 10.1093/humupd/7.6.535.
    1. Gosden RG, Rutherford AJ, Norfolk DR. Transmission of malignant cells in ovarian grafts. Hum Reprod. 1997;12:403.
    1. Shaw J, Trounson A. Oncological implications in the replacement of ovarian tissue. Hum Reprod. 1997;12:403–405.
    1. Blumenfeld Z, Avivi I, Ritter M, Rowe JM. Preservation of fertility and ovarian function and minimizing chemotherapy-induced gonadotoxicity in young women. J Soc Gynecol Investig. 1999;6:229–239. doi: 10.1016/S1071-5576(99)00028-3.
    1. Blumenfeld Z, Eckman A. Preservation of fertility and ovarian function and minimization of chemotherapy-induced gonadotoxicity in young women by GnRH-a. J Natl Cancer Inst Monogr. 2005;34:40–43.
    1. Del Mastro L, Boni L, Michelotti A, Gamucci T, Olmeo N, Gori S, Giordano M, Garrone O, Pronzato P, Bighin C, Levaggi A, Giraudi S, Cresti N, Magnolfi E, Scotto T, Vecchio C, Venturini M. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA. 2011;306:269–276. doi: 10.1001/jama.2011.991.
    1. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303–315. doi: 10.1016/j.cell.2005.06.031.
    1. Lee HJ, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, Tilly JL. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25:3198–3204. doi: 10.1200/JCO.2006.10.3028.
    1. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006;441:1109–1114. doi: 10.1038/nature04929.
    1. Santiquet N, Vallières L, Pothier F, Sirard MA, Robert C, Richard F. Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents. Cell Reprogram. 2012;14:123–129.
    1. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–1555. doi: 10.1634/stemcells.2004-0357.
    1. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77:577–588. doi: 10.1095/biolreprod.106.055244.
    1. Hou Y, Huang Q, Liu T, Guo L. Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim Biophys. 2008;40:830–839.
    1. Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation. 2011;81:162–171. doi: 10.1016/j.diff.2011.01.005.
    1. Miki T. Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther. 2011;2:25. doi: 10.1186/scrt66.
    1. Evron A, Goldman S, Shalev E. Human amniotic epithelial cells differentiate into cells expressing germ cell specific markers when cultured in medium containing serum substitute supplement. Reprod Biol Endocrinol. 2012;10:108. doi: 10.1186/1477-7827-10-108.
    1. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009;11:631–636. doi: 10.1038/ncb1869.
    1. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock. 2008;29:603–611.
    1. Shiromizu K, Thorgeirsson SS, Mattison DR. Effect of cyclophosphamide on oocyte and follicle number in Sprague–Dawley rats, C57BL/6N and DBA/2N mice. Pediatr Pharmacol. 1984;4:213–221.
    1. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428:145–150. doi: 10.1038/nature02316.
    1. Misrahi M, Beau I, Meduri G, Bouvattier C, Atger M, Ghinea N, Hai MV, Bougnères PF, Milgrom E. Gonadotropin receptors and the control of gonadal steroidogenesis: physiology and pathology. Baillieres Clin Endocrinol Metab. 1998;12:35–66. doi: 10.1016/S0950-351X(98)80444-8.
    1. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9. doi: 10.1530/rep.1.00529.
    1. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K, Beck LN, Brennan LV, Oktay K. American Society of Clinical Oncology. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24:2917–29131. doi: 10.1200/JCO.2006.06.5888.
    1. Ghadami M, El-Demerdash E, Zhang D, Salama SA, Binhazim AA, Archibong AE, Chen X, Ballard BR, Sairam MR, Al-Hendy A. Bone marrow transplantation restores follicular maturation and steroid hormones production in a mouse model for primary ovarian failure. PLoS One. 2012;7:e32462. doi: 10.1371/journal.pone.0032462.
    1. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV. Placental mesenchymal stem cells as potential autologous graft for pre and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664e73.
    1. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, Sievert W. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl(4)-treated mice. Cell Transplant. 2010;19:1157e68.
    1. Fang CH, Jin J, Joe JH, Song YS, So BI, Lim SM, Cheon GJ, Woo SK, Ra JC, Lee YY, Kim KS. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012;21:1687–1696. doi: 10.3727/096368912X653039.
    1. Visser JA, Schipper I, Laven JS, Themmen AP. Anti-Müllerian hormone: an ovarian reserve marker in primary ovarian insufficiency. Nat Rev Endocrinol. 2012;8:331–341. doi: 10.1038/nchembio.912.
    1. Hagen CP, Aksglaede L, Sørensen K, Main KM, Boas M, Cleemann L, Holm K, Gravholt CH, Andersson AM, Pedersen AT, Petersen JH, Linneberg A, Kjaergaard S, Juul A. Serum levels of anti-Müllerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J Clin Endocrinol Metab. 2010;95:5003–5010. doi: 10.1210/jc.2010-0930.
    1. Anderson RA, Cameron DA. Pretreatment serum anti-Müllerian hormone predicts long-term ovarian function and bone mass after chemotherapy for early breast cancer. J Clin Endocrinol Metab. 2011;96:1336–1343. doi: 10.1210/jc.2010-2582.
    1. Kohno T, Anzai T, Naito K, Miyasho T, Okamoto M, Yokota H, Yamada S, Maekawa Y, Takahashi T, Yoshikawa T, Ishizaka A, Ogawa S. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res. 2009;81:565–573.
    1. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697–703. doi: 10.1016/S0140-6736(03)14232-8.
    1. Aranguren XL, McCue JD, Hendrickx B, Zhu XH, Du F, Chen E, Pelacho B, Peñuelas I, Abizanda G, Uriz M, Frommer SA, Ross JJ, Schroeder BA, Seaborn MS, Adney JR, Hagenbrock J, Harris NH, Zhang Y, Zhang X, Nelson-Holte MH, Jiang Y, Billiau AD, Chen W, Prósper F, Verfaillie CM, Luttun A. Multipotent adult progenitor cells sustain function of ischemic limbs in mice. J Clin Invest. 2008;118:505–514.
    1. Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Röll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10:494–501. doi: 10.1038/nm1040.
    1. Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol. 2008;45:514–522. doi: 10.1016/j.yjmcc.2008.01.004.
    1. Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539–1546.
    1. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18:413–421. doi: 10.1038/nm.2669.
    1. Ataya KM, Pydyn EF, Ramahi-Ataya AJ. The effect of “activated” cyclophosphamide on human and rat ovarian granulosa cells in vitro. Reprod Toxicol. 1990;4:121–125. doi: 10.1016/0890-6238(90)90006-H.
    1. Banas RA, Trumpower C, Bentlejewski C, Marshall V, Sing G, Zeevi A. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol. 2008;69:321–328. doi: 10.1016/j.humimm.2008.04.007.

Source: PubMed

3
Suscribir