Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms

Martina Maier, Belén Rubio Ballester, Paul F M J Verschure, Martina Maier, Belén Rubio Ballester, Paul F M J Verschure

Abstract

What are the principles underlying effective neurorehabilitation? The aim of neurorehabilitation is to exploit interventions based on human and animal studies about learning and adaptation, as well as to show that the activation of experience-dependent neuronal plasticity augments functional recovery after stroke. Instead of teaching compensatory strategies that do not reduce impairment but allow the patient to return home as soon as possible, functional recovery might be more sustainable as it ensures a long-term reduction in impairment and an improvement in quality of life. At the same time, neurorehabilitation permits the scientific community to collect valuable data, which allows inferring about the principles of brain organization. Hence neuroscience sheds light on the mechanisms of learning new functions or relearning lost ones. However, current rehabilitation methods lack the exact operationalization of evidence gained from skill learning literature, leading to an urgent need to bridge motor learning theory and present clinical work in order to identify a set of ingredients and practical applications that could guide future interventions. This work aims to unify the neuroscientific literature relevant to the recovery process and rehabilitation practice in order to provide a synthesis of the principles that constitute an effective neurorehabilitation approach. Previous attempts to achieve this goal either focused on a subset of principles or did not link clinical application to the principles of motor learning and recovery. We identified 15 principles of motor learning based on existing literature: massed practice, spaced practice, dosage, task-specific practice, goal-oriented practice, variable practice, increasing difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of results, implicit feedback/knowledge of performance, modulate effector selection, action observation/embodied practice, motor imagery, and social interaction. We comment on trials that successfully implemented these principles and report evidence from experiments with healthy individuals as well as clinical work.

Keywords: motor learning; neurorehabilitation; plasticity; principles; stroke.

Copyright © 2019 Maier, Ballester and Verschure.

References

    1. Abe M., Schambra H., Wassermann E. M., Luckenbaugh D., Schweighofer N., Cohen L. G. (2011). Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol. 21 557–562. 10.1016/j.cub.2011.02.030
    1. Ammons R. B. (1947). Acquisition of motor skill: I. Quantitative analysis and theoretical formulation. Psychol. Rev. 54 263–281. 10.1037/h0062455
    1. Ammons R. B., Willig L. (1956). Acquisition of motor skill: IV. Effects of repeated periods of massed practice. J. Exp. Psychol. 51 118–126. 10.1037/h0048337
    1. Andrews K., Stewart J. (1979). Stroke recovery: he can but does he? Rheumatol. Rehabil. 18 43–48. 10.1093/rheumatology/18.1.43
    1. Andrieux M., Danna J., Thon B. (2012). Self-Control of task difficulty during training enhances motor learning of a complex coincidence-anticipation task. Res. Q. Exerc. Sport 83 27–35. 10.1080/02701367.2012.10599822
    1. Arya K. N. (2016). Underlying neural mechanism of mirror therapy: implications for motor rehabilitation in stroke. Neurol. Individ. 64 38–44. 10.1056/NEJMe0902377
    1. Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus Coeruleus-Norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28 403–450. 10.1146/annurev.neuro.28.061604.135709
    1. Ballester Rubio B., Lathe A., Duarte E., Duff A., Verschure P. F. M. J. (2015a). “A wearable bracelet device for promoting arm use in stroke patients,” in Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2015), Portugal, 24–31. 10.5220/0005662300240031
    1. Ballester Rubio B., Oliva L. S., Duff A., Verschure P. F. M. J. (2015b). “Accelerating motor adaptation by virtual reality based modulation of error memories,” in Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 623–629. 10.1109/ICORR.2015.7281270
    1. Ballester Rubio B., Maier M., San Segundo M. R., Castañeda V., Duff A., Verschure P. F. M. J. (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. J. Neuroeng. Rehabil. 13 1–15. 10.1186/s12984-016-0178-x
    1. Basso D. M., Lang C. E. (2017). Consideration of dose and timing when applying interventions after stroke and spinal cord injury. J. Neurol. Phys. Ther. 41 1–19. 10.1097/NPT.0000000000000165.Consideration
    1. Battig W. F. (1966). “Facilitation and interference,” in Acquisition of Skill, ed. Bilodeau E. A. (New York, NY: Academic Press; ).
    1. Billinger S. A. (2015). Does aerobic exercise and the FITT principle fit into stroke. Curr. Neurol. Neurosci. Rep. 15 1–14. 10.1007/s11910-014-0519-8
    1. Birkenmeier R. L., Prager E. M., Lang C. E. (2010). Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil. Neural Repair 24 620–635. 10.1177/1545968310361957
    1. Bosch J., O’Donnell M. J., Barreca S., Thabane L., Wishart L. (2014). Does task-oriented practice improve upper extremity motor recovery after stroke? A systematic review. ISRN Stroke 2014 1–10. 10.1155/2014/504910
    1. Botvinick M., Cohen J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature 391:756 10.1016/0005-2736(86)90402-5
    1. Boyd L. A., Vidoni E. D., Wessel B. D. (2010). Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change? Neurosci. Lett. 482 21–25. 10.1016/j.neulet.2010.06.082
    1. Braun S. M., Beurskens A. J., Borm P. J., Schack T., Wade D. T. (2006). The effects of mental practice in stroke rehabilitation: a systematic review. Arch. Phys. Med. Rehabil. 87 842–852. 10.1016/j.apmr.2006.02.034
    1. Brown M. W., Wilson F. A. W., Riches I. P. (1987). Neuronal evidence that inferomedial temporal cortex is more important than in certain processes underlying recognition memory. Brain Res. 409 158–162. 10.1016/0006-8993(87)90753-0
    1. Butler A. J., James T. W., James K. H. (2011). Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. J. Cogn. Neurosci. 23 3515–3528. 10.1162/jocn_a_00015
    1. Cameirão M. S., Badia S. B., Duarte E., Frisoli A., Verschure P. F. M. J. (2012). The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43 2720–2728. 10.1161/STROKEAHA.112.653196
    1. Carter A. R., Connor L. T., Dromerick A. W. (2010). Rehabilitation after stroke: current state of the science. Curr. Neurol. Neurosci. Rep. 10 158–166. 10.1007/s11910-010-0091-9.Rehabilitation
    1. Censor N., Cohen L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. J. Physiol. 589 21–28. 10.1113/jphysiol.2010.198077
    1. Cepeda N. J., Pashler H., Vul E., Wixted J., Rohrer D. (2006). Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychol. Bull. 132 354–380. 10.1037/0033-2909.132.3.354
    1. Cirstea M. C., Levin M. F. (2007). Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabil. Neural Repair 21 398–411. 10.1177/1545968306298414
    1. Cohen D. A., Pascual-Leone A., Press D. Z., Robertson E. M. (2005). Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc. Natl. Acad. Sci. U.S.A. 102 18237–18241. 10.1073/pnas.0506072102
    1. Danckert J., Ferber S., Doherty T., Steinmetz H., Nicolle D., Goodale M. A. (2002). Selective, non-lateralized impairment of motor imagery following right parietal damage. Neurocase 8 194–205. 10.1093/neucas/8.3.194
    1. Darekar A., McFadyen B. J., Lamontagne A., Fung J. (2015). Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J. Neuroeng. Rehabil. 12 1–14. 10.1186/s12984-015-0035-3
    1. Dettmers C., Teske U., Hamzei F., Uswatte G., Taub E., Weiller C. (2005). Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch. Phys. Med. Rehabil. 86 204–209. 10.1016/j.apmr.2004.05.007
    1. Di Rienzo F., Debarnot U., Daligault S., Saruco E., Delpuech C., Doyon J., et al. (2016). Online and offline performance gains following motor imagery practice: a comprehensive review of behavioral and neuroimaging studies. Front. Hum. Neurosci. 10:315. 10.3389/fnhum.2016.00315
    1. Dobkin B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurol. 3 528–536. 10.1016/S1474-4422(04)00851-8
    1. Dobkin B. H. (2005). Rehabilitation and functional neuroimaging dose-response trajectories for clinical trials. Neurorehabil. Neural Repair 19 276–282. 10.1177/1545968305281892
    1. Dohle C., Püllen J., Nakaten A., Küst J., Rietz C., Karbe H. (2009). Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil. Neural Repair 23 209–217. 10.1177/1545968308324786
    1. Driver J., Noesselt T. (2008). Multisensory interplay reveals crossmodal influences on “Sensory-Specific” brain regions, neural responses, and judgments. Neuron 57 11–23. 10.1016/j.neuron.2007.12.013
    1. Dromerick A. W., Lang C. E., Birkenmeier R. L., Wagner J. M., Miller J. P., Videen T. O., et al. (2009). Very early constraint-induced movement during stroke rehabilitation (VECTORS). Neurology 73 195–201. 10.1212/WNL.0b013e3181ab2b27
    1. Eckhouse R. H., Morash R. P., Maulucci R. A. (1990). Sensory feedback and the impaired motor system. J. Med. Syst. 14 93–105. 10.1007/BF00996909
    1. Ertelt D., Small S., Solodkin A., Dettmers C., McNamara A., Binkofski F., et al. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36 164–173. 10.1016/j.neuroimage.2007.03.043
    1. Fadiga L., Fogassi L., Pavesi G., Rizzolatti G. (1995). Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73 2608–2611. 10.1152/jn.1995.73.6.2608
    1. Ferreira dos Santos L., Christ O., Mate K., Schmidt H., Krüger J., Dohle C. (2016). Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. Biomed. Eng. Online 15 75–88. 10.1186/s12938-016-0289-4
    1. Fiorio M., Mariotti C., Panzeri M., Antonello E., Classen J., Tinazzi M. (2014). The role of the cerebellum in dynamic changes of the sense of body ownership: a study in patients with Cerebellar degeneration. J. Cogn. Neurosci. 24 712–721. 10.1162/jocn
    1. French B., Thomas L. H., Coupe J., McMahon N. E., Connell L., Harrison J., et al. (2016). Repetitive task training for improving functional ability after stroke (Review). Cochrane Database Syst. Rev. 11 CD006073.
    1. Fu M. J., Knutson J., Chae J. (2015). Stroke rehabilitation using virtual environments. Phys. Med. Rehabil. Clin. N. Am. 26 747–757. 10.1016/j.pmr.2015.06.001.Stroke
    1. Furlan L., Conforto A. B., Cohen L. G., Sterr A. (2016). Upper limb immobilisation: a neural plasticity model with relevance to poststroke motor rehabilitation. Neural Plast. 2016:8176217. 10.1155/2016/8176217
    1. Galea J. M., Mallia E., Rothwell J., Diedrichsen J. (2015). The dissociable effects of punishment and reward on motor learning. Nat. Neurosci. 18 597–602. 10.1038/nn.3956
    1. Gallivan J. P., Culham J. C. (2015). Neural coding within human brain areas involved in actions. Curr. Opin. Neurobiol. 33 141–149. 10.1016/j.conb.2015.03.012
    1. Gauggel S., Fischer S. (2001). The effect of goal setting on motor performance and motor learning in brain-damaged patients. Neuropsychol. Rehabil. 11 33–44. 10.1080/09602010042000150
    1. Gendolla G. H. E. (1999). Self-relevance of performance, task difficulty, and task engagement assessed as cardiovascular response. Motiv. Emot. 23 45–66. 10.1023/A:1021331501833
    1. Gentile A. M. (1972). A working model of skill acquisition with application to teaching. Quest 17 3–23. 10.1080/00336297.1972.10519717
    1. Gentile G., Petkova V. I., Ehrsson H. H. (2011). Integration of visual and tactile signals from the hand in the human brain?: an fMRI study. J Neurophysiol. 105 910–922. 10.1152/jn.00840.2010
    1. Gerbier E., Toppino T. C. (2015). The effect of distributed practice: neuroscience, cognition, and education. Trends Neurosci. Educ. 4 49–59. 10.1016/j.tine.2015.01.001
    1. Ghai S. (2018). Effects of real-time (sonification) and rhythmic auditory stimuli on recovering arm function post stroke: a systematic review and meta-analysis. Front. Neurol. 9:488. 10.3389/fneur.2018.00488
    1. Ghazanfar A. A., Schroeder C. E. (2006). Is neocortex essentially multisensory? Trends Cogn. Sci. 10 278–285. 10.1016/j.tics.2006.04.008
    1. Gomez-Rodriguez M., Peters J., Hill J., Schölkopf B., Gharabaghi A., Grosse-Wentrup M. (2011). Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J. Neural Eng. 8:036005. 10.1088/1741-2560/8/3/036005
    1. Grahn J. A. (2012). Neural mechanisms of rhythm perception: current findings and future perspectives. Top. Cogn. Sci. 4 585–606. 10.1111/j.1756-8765.2012.01213.x
    1. Guadagnoli M. A., Lee T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36 212–224. 10.3200/JMBR.36.2.212-224
    1. Gur R. C., Turetsky B. I., Loughead J., Waxman J., Snyder W., Ragland J. D., et al. (2007). Hemodynamic responses in neural circuitries for detection of visual target and novelty: an event-related fMRI study. Hum. Brain Mapp. 28 263–274. 10.1002/hbm.20319
    1. Hamzei F., Läppchen C. H., Glauche V., Mader I., Rijntjes M., Weiller C. (2012). Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere. Neurorehabil. Neural Repair 26 484–496. 10.1177/1545968311427917
    1. Han C. E., Arbib M. A., Schweighofer N. (2008). Stroke rehabilitation reaches a threshold. PLoS Comput. Biol. 4:e1000133. 10.1371/journal.pcbi.1000133
    1. Hardwick R. M., Caspers S., Eickhoff S. B., Swinnen S. P. (2018). Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 94 31–44. 10.1016/j.neubiorev.2018.08.003
    1. Harmsen W. J., Bussmann J. B. J., Selles R. W., Hurkmans H. L. P., Ribbers G. M. (2015). A mirror therapy-based action observation protocol to improve motor learning after stroke. Neurorehabil. Neural Repair 29 509–516. 10.1177/1545968314558598
    1. Harvey R. L. (2009). Improving poststroke recovery: neuroplasticity and task-oriented training. Curr. Treat. Options Cardiovasc. Med. 11 251–259. 10.1007/s11936-009-0026-4
    1. Hasan S. M. M., Rancourt S. N., Austin M. W., Ploughman M. (2016). Defining optimal aerobic exercise parameters to affect complex motor and cognitive outcomes after stroke?: a systematic review and synthesis. Neural Plast. 2016 1–12. 10.1155/2016/2961573
    1. Hasselmo M. E., Wyble B. P., Wallenstein G. V. (1996). Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6 693–708. 10.1002/(sici)1098-1063(1996)6:6<693::aid-hipo12>;2-w
    1. Hauptmann B., Reinhart E., Brandt S. A., Karni A. (2005). The predictive value of the leveling off of within-session performance for procedural memory consolidation. Cogn. Brain Res. 24 181–189. 10.1016/j.cogbrainres.2005.01.012
    1. Hayward K. S., Barker R. N., Carson R. G., Brauer S. G. (2014). The effect of altering a single component of a rehabilitation programme on the functional recovery of stroke patients: a systematic review and meta-analysis. Clin. Rehabil. 28 107–117. 10.1177/0269215513497601
    1. Henson R., Shallice T., Dolan R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science 287 1269–1272. 10.1126/science.287.5456.1269
    1. Henson R. N., Rylands A., Ross E., Vuilleumeir P., Rugg M. D. (2004). The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming. Neuroimage 21 1674–1689. 10.1016/j.neuroimage.2003.12.020
    1. Henson R. N. A. (2003). Neuroimaging studies of priming. Prog. Neurobiol. 70 53–81. 10.1016/S0301-0082(03)00086-8
    1. Hinder M. R., Tresilian J. R., Riek S., Carson R. G. (2008). The contribution of visual feedback to visuomotor adaptation: how much and when? Brain Res. 1197 123–134. 10.1016/j.brainres.2007.12.067
    1. Hird J. S., Landers D. M., Thomas J. R., Horan J. J. (1991). Physical practice is superior to mental practice in enhancing cognitive and motor task performance. J. Sport Exerc. Psychol. 8 281–293. 10.1123/jsep.13.3.281
    1. Horak F. B. (1991). “Assumptions underlying motor control for neurologic rehabilitation,” in Proceedings of the Contemporary Management of Motor Problems: Proceedings of the II Step Conference, (Alexandria, VA: Foundation for Physical Therapy; ), 11–27.
    1. Huang H., Wolf S. L., He J. (2006). Recent developments in biofeedback for neuromotor rehabilitation. J. Neuroeng. Rehabil. 3:11. 10.1186/1743-0003-3-11
    1. Hubbard I. J., Parsons M. W., Neilson C., Carey L. M. (2009). Task-specific training: evidence for and translation to clinical practice. Occup. Ther. Int. 16 190–203. 10.1002/oti
    1. Hylin M. J., Kerr A. L., Holden R. (2017). Understanding the mechanisms of recovery and/or compensation following injury. Neural Plast. 2017:7125057. 10.1155/2017/7125057
    1. Jang S. H., Cho S., Lee J., Park J. (2003). Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Mot. Syst. 14 7–11. 10.1097/01.wnr.0000051544.96524.f2
    1. Jang S. H., You S. H., Hallett M., Cho Y. W., Park C.-M., Cho S.-H., et al. (2005). Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86 2218–2223. 10.1016/j.apmr.2005.04.015
    1. Janssen H., Ada L., Bernhardt J., McElduff P., Pollack M., Nilsson M., et al. (2014). An enriched environment increases activity in stroke patients undergoing rehabilitation in a mixed rehabilitation unit: a pilot non-randomized controlled trial. Disabil. Rehabil. 36 255–262. 10.3109/09638288.2013.788218
    1. Jeannerod M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14 103–109. 10.1006/nimg.2001.0832
    1. Johansen-Berg H., Dawes H., Guy C., Smith S. M., Wade D. T., Matthews P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125 2731–2742. 10.1093/brain/awf282
    1. Johansson B. B., Ohlsson A. L. (1996). Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp. Neurol. 139 322–327. 10.1006/exnr.1996.0106
    1. Johnson S. H. (2000). Imagining the impossible: intact motor representations in hemiplegics. Neuroreport 11 729–732. 10.1097/00001756-200003200-00015
    1. Joo H. W., Hyun J. K., Kim T. U., Chae S. H., Lee Y. I., Lee S. J. (2012). Influence of constraint-induced movement therapy upon evoked potentials in rats with cerebral infarction. Eur. J. Neurosci. 36 3691–3697. 10.1111/ejn.12014
    1. Kalaria R. (2002). Similarities between Alzheimer’s disease and vascular dementia. J. Neurol. Sci. 20 29–34. 10.1016/S0022-510X(02)00256-3
    1. Kawagoe R., Takikawa Y., Hikosaka O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nat. Neurosci. 1 411–416. 10.1038/1625
    1. Keetch K. M., Lee T. D., Schmidt R. A., Young D. E. (2005). Especial skills: their emergence with massive amounts of practice. J. Exp. Psychol. Hum. Percept. Perform. 31 970–978. 10.1037/0096-1523.31.5.970
    1. Kitazawa S., Kimura T., Yin P.-B. (1998). Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392 494–497. 10.1038/33141
    1. Kleim J. A., Jones T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51:S225. 10.1044/1092-4388(2008/018)
    1. Knill D. C., Pouget A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27 712–719. 10.1016/j.tins.2004.10.007
    1. Kollen B. J., Lennon S., Lyons B., Wheatley-Smith L., Scheper M., Buurke J. H., et al. (2009). The effectiveness of the bobath concept in stroke rehabilitation what is the evidence? Stroke 40:e89-97. 10.1161/STROKEAHA.108.533828
    1. Körding K. P., Wolpert D. M. (2006). Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10 319–326. 10.1016/j.tics.2006.05.003
    1. Kwakkel G. (2009). Intensity of practice after stroke: more is better. Schweizer Arch. fur Neurol. und Psychiatr. 160 295–298. 10.1080/09638280500534861
    1. Kwakkel G., van Peppen R., Wagenaar R. C., Wood Dauphinee S., Richards C., Ashburn A., et al. (2004). Effects of augmented exercise therapy time after stroke. Stroke 35 2529–2539. 10.1161/01.str.0000143153.76460.7d
    1. Kwakkel G., Veerbeek J. M., van Wegen E. E. H., Wolf S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurol. 14 224–234. 10.1016/S1474-4422(14)70160-7
    1. Làdavas E. (2008). Multisensory-based approach to the recovery of unisensory deficit. Ann. N. Y. Acad. Sci. 1124 98–110. 10.1196/annals.1440.008
    1. Lage G. M., Ugrinowitsch H., Apolinário-Souza T., Vieira M. M., Albuquerque M. R., Benda R. N. (2015). Repetition and variation in motor practice: a review of neural correlates. Neurosci. Biobehav. Rev. 57 132–141. 10.1016/j.neubiorev.2015.08.012
    1. Lang C. E., MacDonald J. R., Gnip C. (2007). Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J. Neurol. Phys. Ther. 31 3–10. 10.1097/01.NPT.0000260568.31746.34
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke? a systematic review. Lancet Neurol. 8 741–754. 10.1016/S1474-4422(09)70150-4
    1. Laver K. E., Lange B., George S., Deutsch J. E., Saposnik G., Crotty M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 11:CD008349. 10.1002/14651858.CD008349.pub4
    1. Lee T. D., Genovese E. D. (1988). Distribution of practice in motor skill acquisition: learning and performance effects reconsidered. Res. Q. Exerc. Sport 59 277–287. 10.1080/02701367.1988.10609373
    1. Levin M. F., Weiss P. L., Keshner E. A. (2015). Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95 415–425. 10.2522/ptj.20130579
    1. Liepert J., Bauder H., Miltner W. H. R., Taub E., Weiller C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke 31 1210–1216. 10.1161/01.STR.31.6.1210
    1. Lilja M., Bergh A., Johansson L., Nygård L. (2003). Attitudes towards rehabilitation needs and support from assistive technology and the social environment among elderly people with disability. Occup. Ther. Int. 10 75–93. 10.1002/oti.178
    1. Lin C. H., Knowlton B. J., Chiang M.-C., Iacoboni M., Udompholkul P., Wu A. D. (2011). Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage 56 1758–1772. 10.1016/j.neuroimage.2011.02.066
    1. Livingston-Thomas J., Nelson P., Karthikeyan S., Antonescu S., Jeffers M. S., Marzolini S., et al. (2016). Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics 13 395–402. 10.1007/s13311-016-0423-9
    1. Lohse K. R., Lang C. E., Boyd L. A. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke 45 2053–2058. 10.1161/STROKEAHA.114.004695
    1. Lucca L. F. (2009). Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J. Rehabil. Med. 41 1003–1006. 10.2340/16501977-0405
    1. Luft A. R., McCombe-Waller S., Whitall J., Forrester L. W., Macko R., Sorkin J. D., et al. (2004). Repetitive bilateral arm training and motor. JAMA 292 1853–1862.
    1. Maier M., Ballester Rubio B., Duff A., Duarte Oller E., Verschure P. F. M. J. (2019). Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil. Neural Repair 33 112–129. 10.1177/1545968318820169
    1. Marteniuk R. G. (1976). Information Processing in Motor Skills, ed. Holt R. (Toronto, CA: Holt; ).
    1. Martens R., Burwitz L., Zuckerman J. (1976). Modeling effects on motor performance. Res. Quarterly. Am. Alliance Heal. Phys. Educ. Recreat. 47 277–291. 10.1080/10671315.1976.10615372
    1. Mattar A. A. G., Gribble P. L. (2005). Motor learning by observing. Neuron 46 153–160. 10.1016/j.neuron.2005.02.009
    1. Mazzoni P., Krakauer J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 26 3642–3645. 10.1523/JNEUROSCI.5317-05.2006
    1. McCracken H. D., Stelmach G. E. (1977). A test of the schema theory of discrete motor learning. J. Mot. Behav. 9 193–201. 10.1080/00222895.1977.10735109
    1. McGann M. (2010). perceptual modalities: modes of presentation or modes of interaction? J. Conscious. Stud. 17 72–94.
    1. Meredith M. A., Stein B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56 640–662. 10.1152/jn.1986.56.3.640
    1. Middleton E. L., Schwartz M. F. (2012). Errorless learning in cognitive rehabilitation: a critical review. Neuropsychol. Rehabil. 22 138–168. 10.1016/j.neuroimage.2013.08.045
    1. Molier B. I., Van Asseldonk E. H. F., Hermens H. J., Jannink M. J. A. (2010). Nature, timing, frequency and type of augmented feedback; Does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disabil. Rehabil. 32 1799–1809. 10.3109/09638281003734359
    1. Molinari M., Leggio M. G., De Martin M., Cerasa A., Thaut M. (2003). Neurobiology of rhythmic motor entrainment. Ann. N. Y. Acad. Sci. 999 313–321. 10.1196/annals.1284.042
    1. Moore E., Schaefer R. S., Bastin M. E., Roberts N., Overy K. (2017). Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training. Brain Cogn. 116 40–46. 10.1016/j.bandc.2017.05.001
    1. Mulder T. (2007). Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114 1265–1278. 10.1007/s00702-007-0763-z
    1. Mulder T., Hochstenbach J. (2001). Adaptability and flexibility of the human motor system: implications for neurological rehabilitation. Neural Plast. 8 131–140. 10.1155/NP.2001.131
    1. Mulligan M., Guess D., Holvoet J., Brown F. (1980). The individualized curriculum sequencing model (I): implications from research on massed, distributed, or spaced trial training. Res. Pract. Pers. Sev. Disabil. 5 325–336. 10.1177/154079698000500403
    1. Naito E., Kochiyama T., Kitada R., Nakamura S., Matsumura M., Yonekura Y., et al. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. J. Neurosci. 22 3683–3691. 10.1523/jneurosci.22-09-03683.2002
    1. Nathan D. E., Prost R. W., Guastello S. J., Jeutter And D. C., Reynolds N. C. (2012). Investigating the neural correlates of goal-oriented upper extremity movements. Neuro Rehabil. 31 421–428. 10.3233/NRE-2012-00812
    1. Nezafat R., Shadmehr R., Holcomb H. H. (2001). Long-term adaptation to dynamics of reaching movements: a PET study. Exp. Brain Res. 140 66–76. 10.1007/s002210100787
    1. Nielsen J. B., Willerslev-Olsen M., Christiansen L., Lundbye-Jensen J., Lorentzen J. (2015). Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J. Mot. Behav. 47 7–17. 10.1080/00222895.2014.931273
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. Nudo R. J., Milliken G. W., Jenkins W. M., Merzenich M. M. (1996). Use-dependent primary motor alterations of movement representations cortex of adult squirrel monkeys. J. Neurosci. 16 785–807. 10.1523/jneurosci.16-02-00785.1996
    1. Okamoto T., Endo S., Shirao T., Nagao S. (2011). Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning. J. Neurosci. 31 8958–8966. 10.1523/JNEUROSCI.1151-11.2011
    1. Park H., Kim S., Winstein C. J., Gordon J., Schweighofer N. (2016). Short-duration and intensive training improves long-term reaching performance in individuals with Chronic stroke. Neurorehabil. Neural Repair 30 551–561. 10.1177/1545968315606990
    1. Pascual-Leone A., Grafman J., Hallett M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263 1287–1289. 10.1126/science.8122113
    1. Pauwels L., Chalavi S., Gooijers J., Maes C., Albouy G., Sunaert S., et al. (2018). Challenge to promote change: the neural basis of the contextual interference effect in young and older adults. J. Neurosci. 38 3333–3345. 10.1523/JNEUROSCI.2640-17.2018
    1. Pavlides C., Miyashita E., Asanuma H. (1993). Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 70 733–741. 10.1016/j.neuron.2011.07.029
    1. Penhune V. B., Zatorre R. J., Evans A. C. (1998). Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J. Cogn. Neurosci. 10 752–765. 10.1162/089892998563149
    1. Plautz E. J., Milliken G. W., Nudo R. J. (2000). Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol. Learn. Mem. 74 27–55. 10.1006/nlme.1999.3934
    1. Praag H., Van Kempermann G., Gage F. H. (1999). Running increases cell profileration and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2 266–270. 10.1038/6368
    1. Proffitt R., Lange B. (2015). Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Phys. Ther. 95 441–448. 10.2522/ptj.20130571
    1. Rajkowski J., Majczynski H., Clayton E., Aston-Jones G. (2004). Activation of monkey Locus Coeruleus neurons varies with difficulty and performance in a target detection task. J. Neurophysiol. 92 361–371. 10.1152/jn.00673.2003
    1. Ramachandran V. S., Rogers-Ramachandran D. (1996). Synaesthesia in Phantom Limbs induced with mirrors. Proc. Biol. Sci. 263 377–386. 10.1098/rspb.1996.0058
    1. Redcay E., Dodell-Feder D., Pearrow M. J., Mavros P. L., Kleiner M., Gabrieli J. D. E., et al. (2010). Live face-to-face interaction during fMRI; a new tool for social cognitive neuroscience. Neuroimage 50 1639–1647. 10.1038/jid.2014.371
    1. Redgrave P., Gurney K. (2006). The short-latency dopamine signal: a role in discovering novel action. Nat. Rev. Neurosci. 7 967–975. 10.1038/nrn2022
    1. Reinkensmeyer D. J., Burdet E., Casadio M., Krakauer J. W., Kwakkel G., Lang C. E., et al. (2016). Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J. Neuroeng. Rehabil. 13:42. 10.1186/s12984-016-0148-3
    1. Renton T., Tibbles A., Topolovec-Vranic J. (2017). Neurofeedback as a form of cognitive rehabilitation therapy following stroke: a systematic review. PLoS One 12:e0177290. 10.1371/journal.pone.0177290
    1. Ridderinkhof K. R., van den Wildenberg W. P. M., Segalowitz S. J., Carter C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56 129–140. 10.1016/j.bandc.2004.09.016
    1. Rizzolatti G., Sinigaglia C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11 264–274. 10.1038/nrn2805
    1. Ronsse R., Puttemans V., Coxon J. P., Goble D. J., Wagemans J., Wenderoth N., et al. (2011). Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cereb. Cortex 21 1283–1294. 10.1093/cercor/bhq209
    1. Rosenkranz K., Rothwell J. C. (2006). Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur. J. Neurosci. 23 822–829. 10.1111/j.1460-9568.2006.04605.x
    1. Ross J. M., Balasubramaniam R. (2014). Physical and neural entrainment to rhythm: human sensorimotor coordination across tasks and effector systems. Front. Hum. Neurosci. 8:576. 10.3389/fnhum.2014.00576
    1. Rossignol S., Jones G. M. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalogr. Clin. Neurophysiol. 41 83–92. 10.1016/0013-4694(76)90217-0
    1. Rossiter H. E., Boudrias M.-H., Ward N. S. (2014). Do movement-related beta oscillations change after stroke? J. Neurophysiol. 112 2053–2058. 10.1152/jn.00345.2014
    1. Rubin K. H., Bukowski W., Parker J. G. (2006). “Peer interactions, relationships, and groups,” in Handbook of Child Psychology: Vol. 3. Social, Emotional, and Personality Development, eds Damon W., Lerner M., Eisenberg N. (New York, NY: Wiley; ).
    1. Salmoni A. W., Schmidt R. A., Walter C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychol. Bull. 95 355–386. 10.1037/0033-2909.95.3.355
    1. Sánchez A., Millán-Calenti J. C., Lorenzo-López L., Maseda A. (2013). Multisensory stimulation for people with Dementia. Am. J. Alzheimer’s Dis. 28 7–14. 10.1177/1533317512466693
    1. Sato A., Yasuda A. (2005). Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition 94 241–255. 10.1016/j.cognition.2004.04.003
    1. Savion-Lemieux T., Penhune V. B. (2005). The effects of practice and delay on motor skill learning and retention. Exp. Brain Res. 161 423–431. 10.1007/s00221-004-2085-9
    1. Schaechter J. D. (2004). Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73 61–72. 10.1016/j.pneurobio.2004.04.001
    1. Schaefer R. S. (2014). Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369:20130402. 10.1098/rstb.2013.0402
    1. Scharf M. T., Woo N. H., Lattal K. M., Young J. Z., Nguyen P. V., Abel T. (2002). Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J. Neurophysiol. 87 2770–2777. 10.1177/0093854806288066
    1. Schmidt R. A. (1975). A schema theory of discrete motor skill learning. Psychol. Rev. 82 225–260. 10.1037/h0076770
    1. Schmidt R. A., Lee T. D. (2011). Motor Control and Learning: A Behavioral Emphasis, 5th Edn Champaign, IL?: Human Kinetics.
    1. Shadmehr R., Smith M. A., Krakauer J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33 89–108. 10.1146/annurev-neuro-060909-153135
    1. Shams L., Seitz A. R. (2008). Benefits of multisensory learning. Trends Cogn. Sci. 12 411–417. 10.1016/j.tics.2008.07.006
    1. Shea C. H., Kohl R. M. (1991). Composition of practice: influence on the retention of motor skills. Res. Q. Exerc. Sport 62 187–195. 10.1080/02701367.1991.10608709
    1. Shea J. B., Morgan R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Mem. 5 179–187.
    1. Singer B., Vallence A.-M., Cleary S., Cooper I., Loftus A. (2013). The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits. Restor. Neurol. Neurosci. 31 681–691. 10.3233/RNN-130319
    1. Sisti H. M., Glass A. L., Shors T. J. (2007). Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learn. Mem. 14 368–375. 10.1101/lm.488707
    1. Slater M., Spanlang B., Sanchez-Vives M. V., Blanke O. (2010). First person experience of body transfer in virtual reality. PLoS One 5:e0010564. 10.1371/journal.pone.0010564
    1. Smania N., Gandolfi M., Paolucci S., Iosa M., Ianes P., Recchia S., et al. (2012). Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial. Neurorehabil. Neural Repair 26 1035–1045. 10.1177/1545968312446003
    1. Smith M. A., Shadmehr R. (2005). Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J. Neurophysiol. 93 2809–2821. 10.1152/jn.00943.2004
    1. Sober S. J., Sabes P. N. (2003). Multisensory integration during motor planning. J. Neurosci. 23 6982–6992. 10.1523/jneurosci.23-18-06982.2003
    1. Subramanian S., Knaut L. A., Beaudoin C., McFadyen B. J., Feldman A. G., Levin M. F. (2007). Virtual reality environments for post-stroke arm rehabilitation. J. Neuroeng. Rehabil. 4 1–5. 10.1186/1743-0003-4-20
    1. Subramanian S. K., Massie C. L., Malcolm M. P., Levin M. F. (2010). Does provision of extrinsic feedback result in improved motor learning in the upper Limb Poststroke? a systematic review of the evidence. Neurorehabil. Neural Repair 24 113–124. 10.1177/1545968309349941
    1. Sun L., Yin D., Zhu Y., Fan M., Zang L., Wu Y., et al. (2013). Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology 55 913–925. 10.1007/s00234-013-1188-z
    1. Tanaka H., Sejnowski T. J., Krakauer J. W. (2009). Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. J. Neurophysiol. 102 2921–2932. 10.1152/jn.90834.2008
    1. Taub E. (1976). Movement in nonhuman primates deprived of somatsosensory feedback. Exerc. Sport Sci. Rev. 4 335–374.
    1. Taub E., Crago J. E., Burgio L. D., Groomes T. E., Cook E. W., DeLuca S. C., et al. (1994). An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. J. Exp. Anal. Behav. 61 281–293. 10.1901/jeab.1994.61-281
    1. Taub E., Uswatte G. (2003). Constraint-Induced Movement therapy: bridging from the primate laboratory to the stroke rehabilitation laboratory. J. Rehabil. Med. 35 34–40. 10.1080/16501960310010124
    1. Taub E., Uswatte G., Mark V. W., Morris D. M. M. (2006). The learned nonuse phenomenon: implications for rehabilitation. Eura. Medicophys. 42 241–256.
    1. Taub E., Uswatte G., Pidikiti R. (1999). Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation - a clinical review. J. Rehabil. Res. Dev. 36 237–251.
    1. Taylor J. A., Krakauer J. W., Ivry R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. J. Neurosci. 34 3023–3032. 10.1523/JNEUROSCI.3619-13.2014
    1. Thaut M. H., Abiru M. (2010). rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Muisc Percept. 27 263–270.
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 11 193–200. 10.1002/mds.870110213
    1. Thieme H., Mehrholz J., Pohl M., Behrens J., Dohle C. (2012). Mirror therapy for improving motor function after stroke (Review). Cochrane Database Syst. Rev. 14:CD008449 10.1002/14651858.CD008449
    1. Thomas L. H., French B., Coupe J., Mcmahon N., Connell L., Harrison J., et al. (2017). Repetitive task training for improving functional ability after stroke. Stroke 48 102–104. 10.1161/STROKEAHA.117.016503
    1. Tsakiris M., Schütz-Bosbach S., Gallagher S. (2007). On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious. Cogn. 16 645–660. 10.1016/j.concog.2007.05.012
    1. Tseng Y., Diedrichsen J., Krakauer J. W., Shadmehr R., Bastian A. J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98 54–62. 10.1152/jn.00266.2007
    1. van Dijk H., Jannink M. J. A., Hermens H. J. (2005). Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: a systematic review of randomized controlled trials. J. Rehabil. Med. 37 202–211. 10.1080/16501970510030165
    1. van Wegen E., de Goede C., Lim I., Rietberg M., Nieuwboer A., Willems A., et al. (2006). The effect of rhythmic somatosensory cueing on gait in patients with Parkinson’s disease. J. Neurol. Sci. 248 210–214. 10.1016/j.jns.2006.05.034
    1. Vankov A., Hervé-Minvielle A., Sara S. J. (1995). Response to novelty and its rapid habituation in Locus Coeruleus neurons of the freely exploring rat. Eur. J. Neurosci. 7 1180–1187. 10.1111/j.1460-9568.1995.tb01108.x
    1. Veerbeek J. M., van Wegen E., van Peppen R., van der Wees P. J., Hendriks E., Rietberg M., et al. (2014). What is the evidence for physical therapy poststroke? a systematic review and meta-analysis. PLoS One 9:e0087987. 10.1371/journal.pone.0087987
    1. Venna V. R., Xu Y., Doran S. J., Patrizz A., McCullough L. D. (2014). Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl. Psychiatry 4:e351. 10.1038/tp.2013.128
    1. Verschure P. F. M. J. (2011). “Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory,” Paper Presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, 2254–2257. 10.1109/IEMBS.2011.6090428
    1. Wadden K. P., Asis K., De Mang C. S., Neva J. L., Peters S., Lakhani B., et al. (2017). Predicting motor sequence learning in individuals with chronic stroke. Neurorehabil. Neural Repair 3 95–104. 10.1177/1545968316662526
    1. Wallace M. T., Stein B. E. (1996). Sensory organization of the superior colliculus in cat and monkey. Prog. Brain Res. 112 301–311. 10.1016/s0079-6123(08)63337-3
    1. Wexler B. E., Fulbright R. K., Lacadie C. M., Skudlarski P., Kelz M. B., Constable R. T., et al. (1997). An fMRI study of the human cortical motor system response to increasing functional demands. Magn. Reson. Imaging 15 385–396. 10.1016/S0730-725X(96)00232-9
    1. Whitall J., Waller S. M., Silver K. H. C., Macko R. F. (2000). Cueing improves motor function in chronic Hemiparetic stroke. Stroke 31 2390–2395. 10.1161/01.STR.31.10.2390
    1. Wickens C. D., Hutchins S., Carolan T., Cumming J. (2013). Effectiveness of part-task training and increasing-difficulty training strategies: a meta-analysis approach. Hum. Factors 55 461–470. 10.1177/0018720812451994
    1. Wickens J. R., Reynolds J. N. J., Hyland B. I. (2003). Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13 685–690. 10.1016/j.conb.2003.10.013
    1. Wilkins K. B., Owen M., Ingo C., Carmona C., Dewald J. P. A., Yao J. (2017). Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention. Front. Neurol. 8:284. 10.3389/fneur.2017.00284
    1. Winstein C. J. (1991). Knowledge of results and motor learning - Implications for physical therapy. Phys. Ther. 71 140–149. 10.1093/ptj/71.2.140
    1. Winstein C. J., Grafton S. T., Pohl P. S. (1997). Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J. Neurophysiol. 77 1581–1594. 10.1152/jn.1997.77.3.1581
    1. Winstein C. J., Lewthwaite R., Blanton S. R., Wolf L. B., Wishart L. (2014). Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J. Neuologic Phys. Ther. 38 190–200. 10.1097/NPT.0000000000000046.Infusing
    1. Winstein C. J., Wolf S. L., Dromerick A. W., Lane C. J., Nelsen M. A., Lewthwaite R., et al. (2016). Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke the ICARE randomized clinical trial. JAMA 315 571–581. 10.1001/jama.2016.0276
    1. Woldag H., Stupka K., Hummelsheim H. (2010). Repetitive training of complex hand and arm movements with shaping is beneficial for motor improvement in patients after stroke. J. Rehabil. Med. 42 582–587. 10.2340/16501977-0558
    1. Wu C. Y., Trombly C. A., Lin K. C., Tickle-Degnen L. (2000). A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability. Arch. Phys. Med. Rehabil. 81 95–101. 10.1053/apmr.2000.0810095
    1. Wulf G., Prinz W. (2001). Directing attention to movement effects enhances learning: a review. Psychon. Bull. Rev. 8 648–660. 10.3758/BF03196201
    1. Wulf G., Chiviacowsky S., Lewthwaite R. (2012). Altering mindset can enhance motor learning in older adults. Psychol. Aging 27 14–21. 10.1037/a0025718
    1. Yamazaki T., Nagao S., Lennon W., Tanaka S. (2015). Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc. Natl. Acad. Sci. U.S.A. 112 3541–3546. 10.1073/pnas.1413798112
    1. Yoo G. E., Kim S. J. (2016). Rhythmic auditory cueing in motor rehabilitation for stroke patients: systematic review and meta-analysis. J. Music Ther. 53 149–177. 10.1093/jmt/thw003
    1. Yue Z., Zhang X., Wang J. (2017). Hand rehabilitation robotics on poststroke motor recovery. Behav. Neurol. 2017 1–20. 10.1155/2017/3908135
    1. Zhang J., Yu J., Bao Y., Xie Q., Xu Y., Zhang J., et al. (2017). Constraint-induced aphasia therapy in post- stroke aphasia rehabilitation?: a systematic review and meta-analysis of randomized controlled trials. PLoS One 12:e0183349. 10.1371/journal.pone.0183349
    1. Zhang Y., Cai J., Zhang Y., Ren T., Zhao M., Zhao Q. (2016). Improvement in stroke-induced motor dysfunction by music-supported therapy: a systematic review and meta-analysis. Sci. Rep. 6:38521. 10.1038/srep38521
    1. Zhao S., Zhao M., Xiao T., Jolkkonen J., Zhao C. (2013). Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 44 1698–1705. 10.1161/STROKEAHA.111.000361

Source: PubMed

3
Suscribir