Short-term test-retest-reliability of conditioned pain modulation using the cold-heat-pain method in healthy subjects and its correlation to parameters of standardized quantitative sensory testing

Julia Gehling, Tina Mainka, Jan Vollert, Esther M Pogatzki-Zahn, Christoph Maier, Elena K Enax-Krumova, Julia Gehling, Tina Mainka, Jan Vollert, Esther M Pogatzki-Zahn, Christoph Maier, Elena K Enax-Krumova

Abstract

Background: Conditioned Pain Modulation (CPM) is often used to assess human descending pain inhibition. Nine different studies on the test-retest-reliability of different CPM paradigms have been published, but none of them has investigated the commonly used heat-cold-pain method. The results vary widely and therefore, reliability measures cannot be extrapolated from one CPM paradigm to another. Aim of the present study was to analyse the test-retest-reliability of the common heat-cold-pain method and its correlation to pain thresholds.

Methods: We tested the short-term test-retest-reliability within 40 ± 19.9 h using a cold-water immersion (10 °C, left hand) as conditioning stimulus (CS) and heat pain (43-49 °C, pain intensity 60 ± 5 on the 101-point numeric rating scale, right forearm) as test stimulus (TS) in 25 healthy right-handed subjects (12females, 31.6 ± 14.1 years). The TS was applied 30s before (TSbefore), during (TSduring) and after (TSafter) the 60s CS. The difference between the pain ratings for TSbefore and TSduring represents the early CPM-effect, between TSbefore and TSafter the late CPM-effect. Quantitative sensory testing (QST, DFNS protocol) was performed on both sessions before the CPM assessment.

Statistics: paired t-tests, Intraclass correlation coefficient (ICC), standard error of measurement (SEM), smallest real difference (SRD), Pearson's correlation, Bland-Altman analysis, significance level p < 0.05 with Bonferroni correction for multiple comparisons, when necessary.

Results: Pain ratings during CPM correlated significantly (ICC: 0.411…0.962) between both days, though ratings for TSafter were lower on day 2 (p < 0.005). The early (day 1: 16.7 ± 11.7; day 2: 19.5 ± 11.9; ICC: 0.618, SRD: 20.2) and late (day 1: 1.7 ± 9.2; day 2: 7.6 ± 11.5; ICC: 0.178, SRD: 27.0) CPM effect did not differ significantly between both days. Both early and late CPM-effects did not correlate with the pain thresholds.

Conclusions: The short-term test-retest-reliability of the early CPM-effect using the heat-cold-pain method in healthy subjects achieved satisfying results in terms of the ICC. The SRD of the early CPM effect showed that an individual change of > 20 NRS can be attributed to a real change rather than chance. The late CPM-effect was weaker and not reliable.

Trial registration: ClinicalTrials.gov NCT01618604.

Keywords: Conditioned pain modulation; Early CPM effect; Heat-cold-pain method; Late CPM effect; Quantitative sensory test; Test-retest reliability.

Figures

Fig. 1
Fig. 1
Study design
Fig. 2
Fig. 2
Graphic illustration of the CPM effect’s calculation. a Whisker plots of the mean of three pain ratings for TSbefore and TSduring, resulting in the early CPM-effect. b Whisker plots of the mean of three pain ratings for TSbefore and TSafter, resulting in the late CPM-effect. The bottom and the top of the boxes represent the first and third quartiles, the band inside is the median. The ends of the whiskers illustrate the maximum and minimum. TS were applied before, during and after the conditioning stimulus. CPM, conditioned pain modulation; NRS, numeric rating scale; TS, test stimulus
Fig. 3
Fig. 3
Bland-Altman plot for the CPM-effect on day 1 and the difference between the CPM-effect on day 2 and day 1. a early CPM-effect (r =0.019, p = 0.928), b late CPM-effect (r = 0.215, p = 0.302). The bold line is the mean difference of the CPM-effect of both days, the dashed lines represent the 95 % limits of agreement. CPM, Conditioned Pain Modulation; NRS, numeric rating scale

References

    1. Chang L. Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am. 2005;34(2):271–9. doi: 10.1016/j.gtc.2005.02.003.
    1. Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain. 2000;88(1):69–78. doi: 10.1016/S0304-3959(00)00310-9.
    1. Staud R, Robinson ME, Vierck CJ, Jr, Price DD. Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain. 2003;101(1–2):167–74. doi: 10.1016/S0304-3959(02)00325-1.
    1. Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, Sprecher E, et al. Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain. 2008;138(1):22–8. doi: 10.1016/j.pain.2007.10.033.
    1. Grosen K, Vase L, Pilegaard HK, Pfeiffer-Jensen M, Drewes AM. Conditioned pain modulation and situational pain catastrophizing as preoperative predictors of pain following chest wall surgery: a prospective observational cohort study. PLoS One. 2014;9(2):e90185. doi: 10.1371/journal.pone.0090185.
    1. Yarnitsky D, Granot M, Granovsky Y. Pain modulation profile and pain therapy: between pro- and antinociception. Pain. 2014;155(4):663–5. doi: 10.1016/j.pain.2013.11.005.
    1. Granot M, Weissman-Fogel I, Crispel Y, Pud D, Granovsky Y, Sprecher E, et al. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning stimulus painfulness, gender and personality variables matter? Pain. 2008;136(1–2):142–9. doi: 10.1016/j.pain.2007.06.029.
    1. Fujii K, Motohashi K, Umino M. Heterotopic ischemic pain attenuates somatosensory evoked potentials induced by electrical tooth stimulation: diffuse noxious inhibitory controls in the trigeminal nerve territory. Eur J Pain. 2006;10(6):495–504. doi: 10.1016/j.ejpain.2005.07.002.
    1. Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, et al. Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain. 2014
    1. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Reliability of the conditioned pain modulation paradigm to assess endogenous inhibitory pain pathways. Pain Res Manag. 2012;17(2):98–102. doi: 10.1155/2012/610561.
    1. Jurth C, Rehberg B, von Dincklage F. Reliability of subjective pain ratings and nociceptive flexion reflex responses as measures of conditioned pain modulation. Pain Res Manag. 2014;19(2):93–6. doi: 10.1155/2014/698246.
    1. Biurrun Manresa JA, Fritsche R, Vuilleumier PH, Oehler C, Morch CD, Arendt-Nielsen L, et al. Is the conditioned pain modulation paradigm reliable? A test-retest assessment using the nociceptive withdrawal reflex. PLoS One. 2014;9(6):e100241. doi: 10.1371/journal.pone.0100241.
    1. Martel MO, Wasan AD, Edwards RR. Sex differences in the stability of conditioned pain modulation (CPM) among patients with chronic pain. Pain Med. 2013;14(11):1757–68. doi: 10.1111/pme.12220.
    1. Olesen SS, van Goor H, Bouwense SA, Wilder-Smith OH, Drewes AM. Reliability of static and dynamic quantitative sensory testing in patients with painful chronic pancreatitis. Reg Anesth Pain Med. 2012;37(5):530–6. doi: 10.1097/AAP.0b013e3182632c40.
    1. Cathcart S, Winefield AH, Rolan P, Lushington K. Reliability of temporal summation and diffuse noxious inhibitory control. Pain research & management : the journal of the Canadian Pain Society = journal de la societe canadienne pour le traitement de la douleur. 2009;14(6):433–8. doi: 10.1155/2009/523098.
    1. Wilson H, Carvalho B, Granot M, Landau R. Temporal stability of conditioned pain modulation in healthy women over four menstrual cycles at the follicular and luteal phases. Pain. 2013;154(12):2633–8. doi: 10.1016/j.pain.2013.06.038.
    1. Oono Y, Nie H, Matos RL, Wang K, Arendt-Nielsen L. The inter- and intra-individual variance in descending pain modulation evoked by different conditioning stimuli in healthy men. Scandinavian Journal of Pain. 2011;2(4):162–9. doi: 10.1016/j.sjpain.2011.05.006.
    1. Valencia C, Kindler LL, Fillingim RB, George SZ. Stability of conditioned pain modulation in two musculoskeletal pain models: investigating the influence of shoulder pain intensity and gender. BMC Musculoskelet Disord. 2013;14(1):182. doi: 10.1186/1471-2474-14-182.
    1. Werner MU, Petersen MA, Bischoff JM. Test-retest studies in quantitative sensory testing: a critical review. Acta Anaesthesiol Scand. 2013;57(8):957–63. doi: 10.1111/aas.12150.
    1. Pud D, Granovsky Y, Yarnitsky D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain. 2009;144(1–2):16–9. doi: 10.1016/j.pain.2009.02.015.
    1. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8. doi: 10.1016/j.pain.2012.02.021.
    1. Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123(3):231–43. doi: 10.1016/j.pain.2006.01.041.
    1. Geber C, Klein T, Azad S, Birklein F, Gierthmuhlen J, Huge V, et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. Pain. 2011;152(3):548–56. doi: 10.1016/j.pain.2010.11.013.
    1. Magerl W, Krumova EK, Baron R, Tolle T, Treede RD, Maier C. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain. 2010;151(3):598–605. doi: 10.1016/j.pain.2010.07.026.
    1. Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to a-fibre nociceptor input. Brain. 1999;122(Pt 12):2245–57. doi: 10.1093/brain/122.12.2245.
    1. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. doi: 10.1016/j.pain.2010.09.030.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Herrmann C. International experiences with the hospital anxiety and depression scale--a review of validation data and clinical results. J Psychosom Res. 1997;42(1):17–41. doi: 10.1016/S0022-3999(96)00216-4.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Ruscheweyh R, Marziniak M, Stumpenhorst F, Reinholz J, Knecht S. Pain sensitivity can be assessed by self-rating: development and validation of the pain sensitivity questionnaire. Pain. 2009;146(1–2):65–74. doi: 10.1016/j.pain.2009.06.020.
    1. Granot M, Granovsky Y, Sprecher E, Nir RR, Yarnitsky D. Contact heat-evoked temporal summation: tonic versus repetitive-phasic stimulation. Pain. 2006;122(3):295–305. doi: 10.1016/j.pain.2006.02.003.
    1. Hollins M, Harper D, Maixner W. Changes in pain from a repetitive thermal stimulus: the roles of adaptation and sensitization. Pain. 2011;152(7):1583–90. doi: 10.1016/j.pain.2011.02.049.
    1. Tesarz J, Gerhardt A, Schommer K, Treede RD, Eich W. Alterations in endogenous pain modulation in endurance athletes: an experimental study using quantitative sensory testing and the cold-pressor task. Pain. 2013;154(7):1022–9. doi: 10.1016/j.pain.2013.03.014.
    1. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40.
    1. Harvill LM. Standard error of measurement. Educ Meas Issues Pract. 1991;10:33–41. doi: 10.1111/j.1745-3992.1991.tb00195.x.
    1. Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346(8982):1085–7. doi: 10.1016/S0140-6736(95)91748-9.
    1. Grouven U, Bender R, Ziegler A, Lange S. Vergleich von Messmethoden. Dtsch Med Wochenschr. 2007;132:e69–e73. doi: 10.1055/s-2007-959047.
    1. Julious SA, Campbell MJ. Tutorial in biostatistics: sample sizes for parallel group clinical trials with binary data. Stat Med. 2012;31(24):2904–36. doi: 10.1002/sim.5381.
    1. Edwards RR, Fillingim RB, Ness TJ. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain. 2003;101(1–2):155–65. doi: 10.1016/S0304-3959(02)00324-X.
    1. Quiton RL, Greenspan JD. Sex differences in endogenous pain modulation by distracting and painful conditioning stimulation. Pain. 2007;132(Suppl 1):S134–49. doi: 10.1016/j.pain.2007.09.001.
    1. Willer JC, De Broucker T, Le Bars D. Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J Neurophysiol. 1989;62(5):1028–38.
    1. Baad-Hansen L, Poulsen HF, Jensen HM, Svensson P. Lack of sex differences in modulation of experimental intraoral pain by diffuse noxious inhibitory controls (DNIC) Pain. 2005;116(3):359–65. doi: 10.1016/j.pain.2005.05.006.
    1. Nahman-Averbuch H, Martucci KT, Granovsky Y, Weissman-Fogel I, Yarnitsky D, Coghill RC. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information. Pain. 2014;155(12):2491–501. doi: 10.1016/j.pain.2014.07.008.
    1. Piche M, Arsenault M, Rainville P. Cerebral and cerebrospinal processes underlying counterirritation analgesia. J Neurosci. 2009;29(45):14236–46. doi: 10.1523/JNEUROSCI.2341-09.2009.
    1. Terkelsen AJ, Andersen OK, Hansen PO, Jensen TS. Effects of heterotopic- and segmental counter-stimulation on the nociceptive withdrawal reflex in humans. Acta Physiol Scand. 2001;172(3):211–7. doi: 10.1046/j.1365-201x.2001.00856.x.
    1. Streff A, Kuehl LK, Michaux G, Anton F. Differential physiological effects during tonic painful hand immersion tests using hot and ice water. Eur J Pain. 2010;14(3):266–72. doi: 10.1016/j.ejpain.2009.05.011.
    1. Serrao M, Rossi P, Sandrini G, Parisi L, Amabile GA, Nappi G, et al. Effects of diffuse noxious inhibitory controls on temporal summation of the RIII reflex in humans. Pain. 2004;112(3):353–60. doi: 10.1016/j.pain.2004.09.018.
    1. Pickering G, Pereira B, Dufour E, Soule S, Dubray C. Impaired modulation of pain in patients with postherpetic neuralgia. Pain Res Manag. 2014;19(1):e19–23. doi: 10.1155/2014/507947.
    1. Moont R, Pud D, Sprecher E, Sharvit G, Yarnitsky D. ‘Pain inhibits pain’ mechanisms: Is pain modulation simply due to distraction? Pain. 2010;150(1):113–20. doi: 10.1016/j.pain.2010.04.009.
    1. Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D. Temporal changes in cortical activation during distraction from pain: a comparative LORETA study with conditioned pain modulation. Brain Res. 2012;1435:105–17. doi: 10.1016/j.brainres.2011.11.056.
    1. Vaegter HB, Handberg G, Graven-Nielsen T. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans. Pain. 2014;155(1):158–67. doi: 10.1016/j.pain.2013.09.023.
    1. Washington LL, Gibson SJ, Helme RD. Age-related differences in the endogenous analgesic response to repeated cold water immersion in human volunteers. Pain. 2000;89(1):89–96. doi: 10.1016/S0304-3959(00)00352-3.
    1. Oono Y, Baad-Hansen L, Wang K, Arendt-Nielsen L, Svensson P. Effect of conditioned pain modulation on trigeminal somatosensory function evaluated by quantitative sensory testing. Pain. 2013
    1. Razavi M, Hansson PT, Johansson B, Leffler AS. The influence of intensity and duration of a painful conditioning stimulation on conditioned pain modulation in volunteers. Eur J Pain. 2013
    1. Klauenberg S, Maier C, Assion HJ, Hoffmann A, Krumova EK, Magerl W, et al. Depression and changed pain perception: hints for a central disinhibition mechanism. Pain. 2008;140(2):332–43. doi: 10.1016/j.pain.2008.09.003.
    1. Uhl I, Krumova EK, Regeniter S, Bar KJ, Norra C, Richter H, et al. Association between wind-up ratio and central serotonergic function in healthy subjects and depressed patients. Neurosci Lett. 2011;504(2):176–80. doi: 10.1016/j.neulet.2011.09.033.
    1. Boettger MK, Grossmann D, Bar KJ. Thresholds and perception of cold pain, heat pain, and the thermal grill illusion in patients with major depressive disorder. Psychosom Med. 2013;75(3):281–7. doi: 10.1097/PSY.0b013e3182881a9c.
    1. Terhaar J, Boettger MK, Schwier C, Wagner G, Israel AK, Bar KJ. Increased sensitivity to heat pain after sad mood induction in female patients with major depression. Eur J Pain. 2010;14(5):559–63. doi: 10.1016/j.ejpain.2009.09.004.
    1. Vidor LP, Torres IL, Medeiros LF, Dussan-Sarria JA, Dall’agnol L, Deitos A, et al. Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome. BMC Neurosci. 2014;15:42. doi: 10.1186/1471-2202-15-42.
    1. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12(4):331–59. doi: 10.1038/sj.mp.4001949.
    1. Treister R, Pud D, Eisenberg E. The dopamine agonist apomorphine enhances conditioned pain modulation in healthy humans. Neurosci Lett. 2013;548:115–9. doi: 10.1016/j.neulet.2013.05.041.
    1. Yoshimura M, Furue H. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci. 2006;101(2):107–17. doi: 10.1254/jphs.CRJ06008X.
    1. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the hospital anxiety and depression scale. An updated literature review. J Psychosom Res. 2002;52(2):69–77. doi: 10.1016/S0022-3999(01)00296-3.
    1. Nir RR, Yarnitsky D, Honigman L, Granot M. Cognitive manipulation targeted at decreasing the conditioning pain perception reduces the efficacy of conditioned pain modulation. Pain. 2012;153(1):170–6. doi: 10.1016/j.pain.2011.10.010.
    1. Grashorn W, Sprenger C, Forkmann K, Wrobel N, Bingel U. Age-dependent decline of endogenous pain control: exploring the effect of expectation and depression. PLoS One. 2013;8(9):e75629. doi: 10.1371/journal.pone.0075629.
    1. Agostinho CM, Scherens A, Richter H, Schaub C, Rolke R, Treede RD, et al. Habituation and short-term repeatability of thermal testing in healthy human subjects and patients with chronic non-neuropathic pain. Eur J Pain. 2009;13(8):779–85. doi: 10.1016/j.ejpain.2008.10.002.
    1. Treister R, Eisenberg E, Gershon E, Haddad M, Pud D. Factors affecting - and relationships between-different modes of endogenous pain modulation in healthy volunteers. Eur J Pain. 2010;14(6):608–14. doi: 10.1016/j.ejpain.2009.10.005.
    1. Rezaii T, Hirschberg AL, Carlstrom K, Ernberg M. The influence of menstrual phases on pain modulation in healthy women. J Pain. 2012;13(7):646–55. doi: 10.1016/j.jpain.2012.04.002.

Source: PubMed

3
Suscribir