Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction

Raffaele Altara, Mauro Giordano, Einar S Nordén, Alessandro Cataliotti, Mazen Kurdi, Saeed N Bajestani, George W Booz, Raffaele Altara, Mauro Giordano, Einar S Nordén, Alessandro Cataliotti, Mazen Kurdi, Saeed N Bajestani, George W Booz

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.

Keywords: diastolic dysfunction; endothelial and microvascular dysfunction; heart function; hypertension; inflammation; metabolic disease.

Figures

Figure 1
Figure 1
Major comorbidities that negatively affect prognosis in patients with HFpEF. The graph shows the prevalence of comorbidities (in percent) in HFpEF patients enrolled in different clinical studies as summarized by Triposkiadis et al. (35): hypertension (HTN), atrial fibrillation (AF), anemia, diabetes mellitus or type II diabetes (DM), chronic kidney disease (CKD), obesity.
Figure 2
Figure 2
Scheme for the proposed etiology of heart failure with preserved ejection fraction (HFpEF) relevant to obesity and type 2 diabetes. Left side: at the organ level, HFpEF is characterized by cardiac hypertrophy and a marked increase in the left ventricular mass/volume ratio (concentric remodeling), as well as increased stiffness and often enlargement of the left atrium. Right panel: coronary microvascular inflammation is postulated to play a key role in HFpEF progression, encompassing endothelial dysfunction and reduced nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)—protein kinase G (PKG) signaling. Increased stiffness of both myofilaments and the extracellular matrix is thought to impair diastolic function of the heart. The former is postulated to result in part from reduced PKG-mediated phosphorylation of titin, the protein that determines passive elasticity of cardiomyocytes. The later would result from increased collagen deposition and cross-linking (fibrosis), due to loss of cGMP/PKG anti-fibrotic signaling and increased inflammatory endothelium-mediated recruitment of immune cells that activate resident cardiac fibroblasts. Diastolic dysfunction is likely an antecedent event that interacts synergistically with other remodeling events at the cellular level to foster development of HFpEF (images adapted and reproduced with permission from the copyright holder http://servier.com/Powerpoint-image-bank).

References

    1. Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it’s not just about myocardial recovery. Expert Rev Med Devices (2017) 14:15–26.10.1080/17434440.2017.1262762
    1. Ng CY, Heist EK. Cardiac resynchronization therapy: maximizing the response to biventricular pacing. Cardiol Rev (2017) 25:6–11.10.1097/CRD.0000000000000127
    1. Marinescu KK, Uriel N, Adatya S. The future of mechanical circulatory support for advanced heart failure. Curr Opin Cardiol (2016) 31:321–8.10.1097/HCO.0000000000000287
    1. Aronow WS. Current treatment of heart failure with reduction of left ventricular ejection fraction. Expert Rev Clin Pharmacol (2016) 9:1619–31.10.1080/17512433.2016.1242067
    1. Greenberg B. Novel therapies for heart failure – where do they stand? Circ J (2016) 80:1882–91.10.1253/circj.CJ-16-0742
    1. Andersson C, Vasan RS. Epidemiology of heart failure with preserved ejection fraction. Heart Fail Clin (2014) 10:377–88.10.1016/j.hfc.2014.04.003
    1. Alsamara M, Alharethi R. Heart failure with preserved ejection fraction. Expert Rev Cardiovasc Ther (2014) 12:743–50.10.1586/14779072.2014.911086
    1. Borlaug BA. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ J (2014) 78:20–32.10.1253/circj.CJ-13-1103
    1. Becher PM, Lindner D, Fluschnik N, Blankenberg S, Westermann D. Diagnosing heart failure with preserved ejection fraction. Expert Opin Med Diagn (2013) 7:463–74.10.1517/17530059.2013.825246
    1. Webb J, Jackson T, Claridge S, Sammut E, Behar J, Carr-White G. Management of heart failure with preserved ejection fraction. Practitioner (2015) 259:21–4.
    1. Nativi-Nicolau J, Ryan JJ, Fang JC. Current therapeutic approach in heart failure with preserved ejection fraction. Heart Fail Clin (2014) 10:525–38.10.1016/j.hfc.2014.04.007
    1. Shakib S, Clark RA. Heart failure pharmacotherapy and supports in the elderly – a short review. Curr Cardiol Rev (2016) 12:180–5.10.2174/1573403X12666160622102802
    1. Rogers FJ, Gundala T, Ramos JE, Serajian A. Heart failure with preserved ejection fraction. J Am Osteopath Assoc (2015) 115:432–42.10.7556/jaoa.2015.089
    1. Upadhya B, Taffet GE, Cheng CP, Kitzman DW. Heart failure with preserved ejection fraction in the elderly: scope of the problem. J Mol Cell Cardiol (2015) 83:73–87.10.1016/j.yjmcc.2015.02.025
    1. Zouein FA, de Castro Bras LE, da Costa DV, Lindsey ML, Kurdi M, Booz GW. Heart failure with preserved ejection fraction: emerging drug strategies. J Cardiovasc Pharmacol (2013) 62:13–21.10.1097/FJC.0b013e31829a4e61
    1. Lam CS, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail (2011) 13:18–28.10.1093/eurjhf/hfq121
    1. Liu Y, Haddad T, Dwivedi G. Heart failure with preserved ejection fraction: current understanding and emerging concepts. Curr Opin Cardiol (2013) 28:187–96.10.1097/HCO.0b013e32835c5492
    1. Meng Q, Lai YC, Kelly NJ, Bueno M, Baust J, Bachman T, et al. Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction (PH-HFpEF). Am J Respir Cell Mol Biol (2017) 56(4):497–505.10.1165/rcmb.2016-0177OC
    1. Franssen C, Gonzalez Miqueo A. The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth Heart J (2016) 24:259–67.10.1007/s12471-016-0812-z
    1. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation (2015) 131:1247–59.10.1161/CIRCULATIONAHA.114.013215
    1. Tschope C, Lam CS. Diastolic heart failure: what we still don’t know. Looking for new concepts, diagnostic approaches, and the role of comorbidities. Herz (2012) 37:875–9.10.1007/s00059-012-3719-5
    1. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J (2011) 32:670–9.10.1093/eurheartj/ehq426
    1. von Lueder TG, Krum H. New medical therapies for heart failure. Nat Rev Cardiol (2015) 12:730–40.10.1038/nrcardio.2015.137
    1. Sharma K, Hill T, Grams M, Daya NR, Hays AG, Fine D, et al. Outcomes and worsening renal function in patients hospitalized with heart failure with preserved ejection fraction. Am J Cardiol (2015) 116:1534–40.10.1016/j.amjcard.2015.08.019
    1. Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. J Geriatr Cardiol (2015) 12:294–304.10.11909/j.issn.1671-5411.2015.03.013
    1. Jeong EM, Dudley SC, Jr. Diastolic dysfunction. Circ J (2015) 79:470–7.10.1253/circj.CJ-15-0064
    1. Taylor AL. Heart failure in women. Curr Heart Fail Rep (2015) 12:187–95.10.1007/s11897-015-0252-x
    1. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol (2014) 11:507–15.10.1038/nrcardio.2014.83
    1. Andersen MJ, Borlaug BA. Heart failure with preserved ejection fraction: current understandings and challenges. Curr Cardiol Rep (2014) 16:501.10.1007/s11886-014-0501-8
    1. den Ruijter H, Pasterkamp G, Rutten FH, Lam CS, Chi C, Tan KH, et al. Heart failure with preserved ejection fraction in women: the Dutch Queen of Hearts program. Neth Heart J (2015) 23:89–93.10.1007/s12471-014-0613-1
    1. Edelmann F, Stahrenberg R, Gelbrich G, Durstewitz K, Angermann CE, Dungen HD, et al. Contribution of comorbidities to functional impairment is higher in heart failure with preserved than with reduced ejection fraction. Clin Res Cardiol (2011) 100:755–64.10.1007/s00392-011-0305-4
    1. Maurer MS, Mancini D. HFpEF: is splitting into distinct phenotypes by comorbidities the pathway forward? J Am Coll Cardiol (2014) 64:550–2.10.1016/j.jacc.2014.06.010
    1. Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc (2016) 5:e002477.10.1161/JAHA.115.002477
    1. Lindman BR. The diabetic heart failure with preserved ejection fraction phenotype: is it real and is it worth targeting therapeutically? Circulation (2017) 135:736–40.10.1161/CIRCULATIONAHA.116.025957
    1. Triposkiadis F, Giamouzis G, Parissis J, Starling RC, Boudoulas H, Skoularigis J, et al. Reframing the association and significance of co-morbidities in heart failure. Eur J Heart Fail (2016) 18:744–58.10.1002/ejhf.600
    1. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the irbesartan in heart failure with preserved ejection fraction (I-PRESERVE) trial. Circ Heart Fail (2011) 4:324–31.10.1161/CIRCHEARTFAILURE.110.959890
    1. Ul Haq MA, Wong C, Hare DL. Heart failure with preserved ejection fraction: an insight into its prevalence, predictors, and implications of early detection. Rev Cardiovasc Med (2015) 16:20–7.10.3909/ricm0725
    1. Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol (2007) 49:198–207.10.1016/j.jacc.2006.08.050
    1. Dalos D, Mascherbauer J, Zotter-Tufaro C, Duca F, Kammerlander AA, Aschauer S, et al. Functional status, pulmonary artery pressure, and clinical outcomes in heart failure with preserved ejection fraction. J Am Coll Cardiol (2016) 68:189–99.10.1016/j.jacc.2016.04.052
    1. von Bibra H, Paulus W, St John Sutton M. Cardiometabolic syndrome and increased risk of heart failure. Curr Heart Fail Rep (2016) 13(5):219–29.10.1007/s11897-016-0298-4
    1. Kitzman DW, Shah SJ. The HFpEF obesity phenotype: the elephant in the room. J Am Coll Cardiol (2016) 68:200–3.10.1016/j.jacc.2016.05.019
    1. Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev Endocr Metab Disord (2013) 14:29–38.10.1007/s11154-012-9231-7
    1. Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, et al. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res (2017).10.1093/cvr/cvx093
    1. Echouffo-Tcheugui JB, Xu H, DeVore AD, Schulte PJ, Butler J, Yancy CW, et al. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: findings from get with the guidelines-heart failure registry. Am Heart J (2016) 182:9–20.10.1016/j.ahj.2016.07.025
    1. Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J (2015) 36:1718–27, 1727a–c.10.1093/eurheartj/ehv134
    1. Lam CS. Diabetic cardiomyopathy: an expression of stage B heart failure with preserved ejection fraction. Diab Vasc Dis Res (2015) 12:234–8.10.1177/1479164115579006
    1. Lindman BR, Davila-Roman VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol (2014) 64:541–9.10.1016/j.jacc.2014.05.030
    1. Kristensen SL, Mogensen UM, Jhund PS, Petrie MC, Preiss D, Win S, et al. Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the i-preserve trial (irbesartan in heart failure with preserved ejection fraction). Circulation (2017) 135:724–35.10.1161/CIRCULATIONAHA.116.024593
    1. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail (2015) 17:925–35.10.1002/ejhf.327
    1. Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) (2015) 119:1233–42.10.1152/japplphysiol.00374.2015
    1. Methawasin M, Strom JG, Slater RE, Fernandez V, Saripalli C, Granzier H. Experimentally increasing the compliance of titin through RNA binding motif-20 (RBM20) inhibition improves diastolic function in a mouse model of heart failure with preserved ejection fraction. Circulation (2016) 134:1085–99.10.1161/CIRCULATIONAHA.116.023003
    1. Huerta A, Lopez B, Ravassa S, San Jose G, Querejeta R, Beloqui O, et al. Association of cystatin C with heart failure with preserved ejection fraction in elderly hypertensive patients: potential role of altered collagen metabolism. J Hypertens (2016) 34:130–8.10.1097/HJH.0000000000000757
    1. Wolfel EE. Exploring the mechanisms of exercise intolerance in patients with HFpEF: are we too “cardiocentric”? JACC Heart Fail (2016) 4:646–8.10.1016/j.jchf.2016.06.002
    1. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol (2013) 62:263–71.10.1016/j.jacc.2013.02.092
    1. Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Brock RW, Olfert IM, et al. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol (2014) 307:H1714–28.10.1152/ajpheart.00605.2014
    1. Ngo DT, Farb MG, Kikuchi R, Karki S, Tiwari S, Bigornia SJ, et al. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation (2014) 130:1072–80.10.1161/CIRCULATIONAHA.113.008171
    1. Bagi Z, Broskova Z, Feher A. Obesity and coronary microvascular disease – implications for adipose tissue-mediated remote inflammatory response. Curr Vasc Pharmacol (2014) 12:453–61.10.2174/1570161112666140423221843
    1. Li ZL, Ebrahimi B, Zhang X, Eirin A, Woollard JR, Tang H, et al. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function. Am J Physiol Heart Circ Physiol (2014) 306:H1087–101.10.1152/ajpheart.00052.2013
    1. Tona F, Serra R, Di Ascenzo L, Osto E, Scarda A, Fabris R, et al. Systemic inflammation is related to coronary microvascular dysfunction in obese patients without obstructive coronary disease. Nutr Metab Cardiovasc Dis (2014) 24:447–53.10.1016/j.numecd.2013.09.021
    1. Frisbee JC, Samora JB, Peterson J, Bryner R. Exercise training blunts microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ Physiol (2006) 291:H2483–92.10.1152/ajpheart.00566.2006
    1. Neves KB, Nguyen Dinh Cat A, Lopes RA, Rios FJ, Anagnostopoulou A, Lobato NS, et al. Chemerin regulates crosstalk between adipocytes and vascular cells through NOX. Hypertension (2015) 66:657–66.10.1161/HYPERTENSIONAHA.115.05616
    1. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab (2016) 20:546–51.10.4103/2230-8210.183480
    1. Rosenson RS, Fioretto P, Dodson PM. Does microvascular disease predict macrovascular events in type 2 diabetes? Atherosclerosis (2011) 218:13–8.10.1016/j.atherosclerosis.2011.06.029
    1. Wang Y, Yu Q, Fan D, Cao F. Coronary heart disease in type 2 diabetes: mechanisms and comprehensive prevention strategies. Expert Rev Cardiovasc Ther (2012) 10:1051–60.10.1586/erc.12.52
    1. Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res (2013) 10:472–82.10.1177/1479164113500680
    1. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev (2013) 93:137–88.10.1152/physrev.00045.2011
    1. Tschope C, Van Linthout S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr Heart Fail Rep (2014) 11:436–44.10.1007/s11897-014-0219-3
    1. Gallet R, de Couto G, Simsolo E, Valle J, Sun B, Liu W, et al. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci (2016) 1:14–28.10.1016/j.jacbts.2016.01.003
    1. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail (2011) 4:44–52.10.1161/CIRCHEARTFAILURE.109.931451
    1. Sucato V, Evola S, Novo G, Sansone A, Quagliana A, Andolina G, et al. Angiographic evaluation of coronary microvascular dysfunction in patients with heart failure and preserved ejection fraction. Microcirculation (2015) 22:528–33.10.1111/micc.12223
    1. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail (2016) 4:312–24.10.1016/j.jchf.2015.10.007
    1. Kovacs A, Alogna A, Post H, Hamdani N. Is enhancing cGMP-PKG signalling a promising therapeutic target for heart failure with preserved ejection fraction? Neth Heart J (2016) 24:268–74.10.1007/s12471-016-0814-x
    1. Arcaro A, Lembo G, Tocchetti CG. Nitroxyl (HNO) for treatment of acute heart failure. Curr Heart Fail Rep (2014) 11:227–35.10.1007/s11897-014-0210-z
    1. Bullen ML, Miller AA, Andrews KL, Irvine JC, Ritchie RH, Sobey CG, et al. Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal (2011) 14:1675–86.10.1089/ars.2010.3327
    1. Zgheib C, Kurdi M, Zouein FA, Gunter BW, Stanley BA, Zgheib J, et al. Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes: evidence that STAT3 signaling is redox-sensitive. PLoS One (2012) 7:e43313.10.1371/journal.pone.0043313
    1. Andrews KL, Sampson AK, Irvine JC, Shihata WA, Michell DL, Lumsden NG, et al. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization. Clin Sci (Lond) (2016) 130:1629–40.10.1042/CS20160097
    1. Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, et al. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal (2013) 19:1185–97.10.1089/ars.2012.5057
    1. Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, et al. Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res (2012) 111:1002–11.10.1161/CIRCRESAHA.112.270827
    1. Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, et al. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension (2015) 65:385–92.10.1161/HYPERTENSIONAHA.114.04285
    1. Cao N, Wong YG, Rosli S, Kiriazis H, Huynh K, Qin C, et al. Chronic administration of the nitroxyl donor 1-nitrosocyclo hexyl acetate limits left ventricular diastolic dysfunction in a mouse model of diabetes mellitus in vivo. Circ Heart Fail (2015) 8:572–81.10.1161/CIRCHEARTFAILURE.114.001699
    1. Zamani P, Tan VX, Soto-Calderon H, Beraun M, Brandimarto J, Trieu L, et al. Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction. Circ Res (2016) 120(7):1151–61.10.1161/CIRCRESAHA.116.309832
    1. Eggebeen J, Kim-Shapiro DB, Haykowsky M, Morgan TM, Basu S, Brubaker P, et al. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail (2016) 4:428–37.10.1016/j.jchf.2015.12.013
    1. Chirinos JA, Zamani P. The nitrate-nitrite-NO pathway and its implications for heart failure and preserved ejection fraction. Curr Heart Fail Rep (2016) 13:47–59.10.1007/s11897-016-0277-9
    1. Borlaug BA, Koepp KE, Melenovsky V. Sodium nitrite improves exercise hemodynamics and ventricular performance in heart failure with preserved ejection fraction. J Am Coll Cardiol (2015) 66:1672–82.10.1016/j.jacc.2015.07.067
    1. Cannavo A, Koch WJ. Targeting beta3-adrenergic receptors in the heart: selective agonism and beta-blockade. J Cardiovasc Pharmacol (2017) 69:71–8.10.1097/FJC.0000000000000444
    1. Michel LY, Balligand JL. New and emerging therapies and targets: beta-3 agonists. Handb Exp Pharmacol (2016) 243:205–23.10.1007/164_2016_88
    1. Karimi Galougahi K, Liu CC, Garcia A, Gentile C, Fry NA, Hamilton EJ, et al. Beta3 adrenergic stimulation restores nitric oxide/redox balance and enhances endothelial function in hyperglycemia. J Am Heart Assoc (2016) 5:e002824.10.1161/JAHA.115.002824
    1. Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, et al. Beta3-adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol (2015) 309:C286–95.10.1152/ajpcell.00071.2015
    1. Kleindienst A, Battault S, Belaidi E, Tanguy S, Rosselin M, Boulghobra D, et al. Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol (2016) 111:40.10.1007/s00395-016-0559-0
    1. Machado MV, Martins RL, Borges J, Antunes BR, Estato V, Vieira AB, et al. Exercise training reverses structural microvascular rarefaction and improves endothelium-dependent microvascular reactivity in rats with diabetes. Metab Syndr Relat Disord (2016) 14:298–304.10.1089/met.2015.0146
    1. Francois ME, Durrer C, Pistawka KJ, Halperin FA, Little JP. Resistance-based interval exercise acutely improves endothelial function in type 2 diabetes. Am J Physiol Heart Circ Physiol (2016) 311:H1258–67.10.1152/ajpheart.00398.2016
    1. Olver TD, Laughlin MH. Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes. Am J Physiol Heart Circ Physiol (2016) 310:H337–50.10.1152/ajpheart.00440.2015
    1. Schreuder TH, Duncker DJ, Hopman MT, Thijssen DH. Randomized controlled trial using bosentan to enhance the impact of exercise training in subjects with type 2 diabetes mellitus. Exp Physiol (2014) 99:1538–47.10.1113/expphysiol.2014.081182
    1. Pandey A, Parashar A, Kumbhani DJ, Agarwal S, Garg J, Kitzman D, et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail (2015) 8:33–40.10.1161/CIRCHEARTFAILURE.114.001615
    1. Giordano M, Ciarambino T, Castellino P, Cataliotti A, Malatino L, Ferrara N, et al. Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease. Nutrition (2014) 30:1045–9.10.1016/j.nut.2014.03.007
    1. Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol (2013) 62:584–92.10.1016/j.jacc.2013.04.033
    1. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical Trial. JAMA (2016) 315:36–46.10.1001/jama.2015.17346
    1. Wenger NK. Lifestyle interventions to improve exercise tolerance in obese older patients with heart failure and preserved ejection fraction. JAMA (2016) 315:31–3.10.1001/jama.2015.17347
    1. Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Sarcopenic obesity and the pathogenesis of exercise intolerance in heart failure with preserved ejection fraction. Curr Heart Fail Rep (2015) 12:205–14.10.1007/s11897-015-0257-5
    1. Owan T, Avelar E, Morley K, Jiji R, Hall N, Krezowski J, et al. Favorable changes in cardiac geometry and function following gastric bypass surgery: 2-year follow-up in the Utah obesity study. J Am Coll Cardiol (2011) 57:732–9.10.1016/j.jacc.2010.10.017
    1. Heinonen I, Sorop O, de Beer VJ, Duncker DJ, Merkus D. What can we learn about treating heart failure from the heart’s response to acute exercise? Focus on the coronary microcirculation. J Appl Physiol (1985) (2015) 119:934–43.10.1152/japplphysiol.00053.2015
    1. Trippel TD, Holzendorf V, Halle M, Gelbrich G, Nolte K, Duvinage A, et al. Ghrelin and hormonal markers under exercise training in patients with heart failure with preserved ejection fraction: results from the Ex-DHF pilot study. ESC Heart Fail (2017) 4:56–65.10.1002/ehf2.12109
    1. Nagaya N, Kojima M, Uematsu M, Yamagishi M, Hosoda H, Oya H, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol (2001) 280:R1483–7.
    1. Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini A, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol (2002) 159:1029–37.10.1083/jcb.200207165
    1. Churm R, Davies JS, Stephens JW, Prior SL. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev (2017) 18:140–8.10.1111/obr.12474
    1. Panati K, Suneetha Y, Narala VR. Irisin/FNDC5 – an updated review. Eur Rev Med Pharmacol Sci (2016) 20:689–97.
    1. Perakakis N, Triantafyllou GA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol (2017) 13(6):324–37.10.1038/nrendo.2016.221
    1. Shoukry A, Shalaby SM, El-Arabi Bdeer S, Mahmoud AA, Mousa MM, Khalifa A. Circulating serum irisin levels in obesity and type 2 diabetes mellitus. IUBMB Life (2016) 68:544–56.10.1002/iub.1511
    1. Hou N, Han F, Sun X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol (Oxf) (2015) 83:339–43.10.1111/cen.12658
    1. Han F, Zhang S, Hou N, Wang D, Sun X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol (2015) 309:H1501–8.10.1152/ajpheart.00443.2015
    1. Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-Akt-eNOS-NO pathway in the spontaneously hypertensive rat. J Am Heart Assoc (2016) 5:e003433.10.1161/JAHA.116.003433
    1. Poddar M, Chetty Y, Chetty VT. How does obesity affect the endocrine system? A narrative review. Clin Obes (2017) 7(3):136–44.10.1111/cob.12184
    1. Buglioni A, Cannone V, Sangaralingham SJ, Heublein DM, Scott CG, Bailey KR, et al. Aldosterone predicts cardiovascular, renal, and metabolic disease in the general community: a 4-year follow-up. J Am Heart Assoc (2015) 4:e002505.10.1161/JAHA.115.002505
    1. De Vecchis R, Cantatrione C, Mazzei D, Barone A, Maurea N. The impact exerted on clinical outcomes of patients with chronic heart failure by aldosterone receptor antagonists: a meta-analysis of randomized controlled trials. J Clin Med Res (2017) 9:130–42.10.14740/jocmr2851w
    1. Elguindy AM. TOPCAT misses its primary endpoint: should spironolactone be abandoned in HFpEF? Glob Cardiol Sci Pract (2013) 2013:357–60.10.5339/gcsp.2013.42
    1. Bender SB, DeMarco VG, Padilla J, Jenkins NT, Habibi J, Garro M, et al. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction. Hypertension (2015) 65:1082–8.10.1161/HYPERTENSIONAHA.114.04912
    1. Youcef G, Olivier A, Nicot N, Muller A, Deng C, Labat C, et al. Preventive and chronic mineralocorticoid receptor antagonism is highly beneficial in obese SHHF rats. Br J Pharmacol (2016) 173:1805–19.10.1111/bph.13479
    1. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med (2014) 370:1383–92.10.1056/NEJMoa1313731
    1. Lewis EF, Kim HY, Claggett B, Spertus J, Heitner JF, Assmann SF, et al. Impact of spironolactone on longitudinal changes in health-related quality of life in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail (2016) 9:e001937.10.1161/CIRCHEARTFAILURE.114.001937
    1. Kosmala W, Rojek A, Przewlocka-Kosmala M, Wright L, Mysiak A, Marwick TH. Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol (2016) 68:1823–34.10.1016/j.jacc.2016.07.763
    1. Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS, Clausell N, et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation (2015) 131:34–42.10.1161/CIRCULATIONAHA.114.013255
    1. Solomon SD, Claggett B, Lewis EF, Desai A, Anand I, Sweitzer NK, et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J (2016) 37:455–62.10.1093/eurheartj/ehv464
    1. Anand IS, Claggett B, Liu J, Shah AM, Rector TS, Shah SJ, et al. Interaction between spironolactone and natriuretic peptides in patients with heart failure and preserved ejection fraction: from the TOPCAT trial. JACC Heart Fail (2017) 5:241–52.10.1016/j.jchf.2016.11.015
    1. Davel AP, Anwar IJ, Jaffe IZ. The endothelial mineralocorticoid receptor: mediator of the switch from vascular health to disease. Curr Opin Nephrol Hypertens (2017) 26:97–104.10.1097/MNH.0000000000000306
    1. Jia G, Habibi J, DeMarco VG, Martinez-Lemus LA, Ma L, Whaley-Connell AT, et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension (2015) 66:1159–67.10.1161/HYPERTENSIONAHA.115.06015
    1. Njock MS, Fish JE. Endothelial miRNAs as cellular messengers in cardiometabolic diseases. Trends Endocrinol Metab (2017) 28:237–46.10.1016/j.tem.2016.11.009
    1. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail (2015) 17:405–15.10.1002/ejhf.244
    1. Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail (2015) 17:393–404.10.1002/ejhf.223
    1. Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol (2015) 89:42–50.10.1016/j.yjmcc.2014.12.014
    1. Rawal S, Munasinghe PE, Shindikar A, Paulin J, Cameron V, Manning P, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res (2017) 113:90–101.10.1093/cvr/cvw235
    1. da Silva ND, Jr, Fernandes T, Soci UP, Monteiro AW, Phillips MI, de Oliveira EM. Swimming training in rats increases cardiac microRNA-126 expression and angiogenesis. Med Sci Sports Exerc (2012) 44:1453–62.10.1249/MSS.0b013e31824e8a36
    1. Sethupathy P. The promise and challenge of therapeutic microRNA silencing in diabetes and metabolic diseases. Curr Diab Rep (2016) 16:52.10.1007/s11892-016-0745-3
    1. Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) (2016) 40:88–101.10.1038/ijo.2015.170
    1. Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S. MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal (2014) 26:1888–96.10.1016/j.cellsig.2014.05.006
    1. Boon RA, Jae N, Holdt L, Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol (2016) 67:1214–26.10.1016/j.jacc.2015.12.051
    1. de Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, et al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci Rep (2016) 6:37354.10.1038/srep37354
    1. Boulberdaa M, Scott E, Ballantyne M, Garcia R, Descamps B, Angelini GD, et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther (2016) 24:978–90.10.1038/mt.2016.41
    1. Li T, Jiang S, Yang Z, Ma Z, Yi W, Wang D, et al. Targeting the energy guardian AMPK: another avenue for treating cardiomyopathy? Cell Mol Life Sci (2017) 74:1413–29.10.1007/s00018-016-2407-7
    1. Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, et al. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5′ adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler Thromb Vasc Biol (2014) 34:830–6.10.1161/ATVBAHA.113.301938
    1. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol (2015) 89:122–35.10.1016/j.yjmcc.2015.01.021
    1. van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation (2009) 119:2069–77.10.1161/CIRCULATIONAHA.108.803916
    1. Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis. BMJ Open (2017) 7:e013927.10.1136/bmjopen-2016-013927
    1. Cheng JW, Badreldin HA, Patel DK, Bhatt SH. Antidiabetic agents and cardiovascular outcomes in patients with heart diseases. Curr Med Res Opin (2017) 33(6):985–92.10.1080/03007995.2017.1284052
    1. Luconi M, Cantini G, Ceriello A, Mannucci E. Perspectives on cardiovascular effects of incretin-based drugs: from bedside to bench, return trip. Int J Cardiol (2017) 241:302–10.10.1016/j.ijcard.2017.02.126
    1. Munaf M, Pellicori P, Allgar V, Wong K. A meta-analysis of the therapeutic effects of glucagon-like peptide-1 agonist in heart failure. Int J Pept (2012) 2012:249827.10.1155/2012/249827
    1. Martens P, Mathieu C, Verbrugge FH. Promise of SGLT2 inhibitors in heart failure: diabetes and beyond. Curr Treat Options Cardiovasc Med (2017) 19:23.10.1007/s11936-017-0522-x
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med (2015) 373:2117–28.10.1056/NEJMoa1504720
    1. Ampudia-Blasco FJ, Romera I, Arino B, Gomis R. Following the results of the EMPA-REG OUTCOME trial with empagliflozin, is it possible to speak of a class effect? Int J Gen Med (2017) 10:23–6.10.2147/IJGM.S115566
    1. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med (2015) 373:2314–24.10.1056/NEJMoa1510774
    1. Stasch JP, Schlossmann J, Hocher B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr Opin Pharmacol (2015) 21:95–104.10.1016/j.coph.2014.12.014
    1. Pieske B, Butler J, Filippatos G, Lam C, Maggioni AP, Ponikowski P, et al. Rationale and design of the soluble guanylate cyclase stimulator in heart failure studies (SOCRATES). Eur J Heart Fail (2014) 16:1026–38.10.1002/ejhf.135
    1. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA (2015) 314:2251–62.10.1001/jama.2015.15734
    1. Kass DA. Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials. Curr Heart Fail Rep (2012) 9:192–9.10.1007/s11897-012-0101-0
    1. Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F. Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci (2014) 35:404–13.10.1016/j.tips.2014.05.003
    1. Cataliotti A, Costello-Boerrigter LC, Chen HH, Textor SC, Burnett JC., Jr Sustained blood pressure-lowering actions of subcutaneous B-type natriuretic peptide (nesiritide) in a patient with uncontrolled hypertension. Mayo Clin Proc (2012) 87:413–5.10.1016/j.mayocp.2012.02.003
    1. Cataliotti A, Tonne JM, Bellavia D, Martin FL, Oehler EA, Harders GE, et al. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation (2011) 123:1297–305.10.1161/CIRCULATIONAHA.110.981720
    1. Holditch SJ, Schreiber CA, Nini R, Tonne JM, Peng KW, Geurts A, et al. B-type natriuretic peptide deletion leads to progressive hypertension, associated organ damage, and reduced survival: novel model for human hypertension. Hypertension (2015) 66:199–210.10.1161/HYPERTENSIONAHA.115.05610
    1. Hsu S, Kass DA. Can nitrite AMPk up sirt-ainty to treat heart failure with preserved ejection fraction? Circulation (2016) 133:692–4.10.1161/CIRCULATIONAHA.116.021409
    1. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet (2012) 380:1387–95.10.1016/S0140-6736(12)61227-6
    1. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation (2016) 134:73–90.10.1161/CIRCULATIONAHA.116.021884
    1. Belluardo P, Cataliotti A, Bonaiuto L, Giuffre E, Maugeri E, Noto P, et al. Lack of activation of molecular forms of the BNP system in human grade 1 hypertension and relationship to cardiac hypertrophy. Am J Physiol Heart Circ Physiol (2006) 291:H1529–35.10.1152/ajpheart.00107.2006
    1. Macheret F, Heublein D, Costello-Boerrigter LC, Boerrigter G, McKie P, Bellavia D, et al. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J Am Coll Cardiol (2012) 60:1558–65.10.1016/j.jacc.2012.05.049
    1. Khalid U, Wruck LM, Quibrera PM, Bozkurt B, Nambi V, Virani SS, et al. BNP and obesity in acute decompensated heart failure with preserved vs. reduced ejection fraction: the atherosclerosis risk in communities surveillance study. Int J Cardiol (2017) 233:61–6.10.1016/j.ijcard.2017.01.130
    1. van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol (2013) 61:1498–506.10.1016/j.jacc.2012.12.044
    1. Hawkridge AM, Heublein DM, Bergen HR, III, Cataliotti A, Burnett JC, Jr, Muddiman DC. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A (2005) 102:17442–7.10.1073/pnas.0508782102
    1. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int J Cardiol (2014) 176:611–7.10.1016/j.ijcard.2014.08.007
    1. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A (2000) 97:8525–9.10.1073/pnas.150149097
    1. Vesely DL, Perez-Lamboy GI, Schocken DD. Vessel dilator, long acting natriuretic peptide, and kaliuretic peptide increase circulating prostaglandin E2. Life Sci (2000) 66:905–13.10.1016/S0024-3205(99)00674-8
    1. Clark LC, Farghaly H, Saba SR, Vesely DL. Amelioration with vessel dilator of acute tubular necrosis and renal failure established for 2 days. Am J Physiol Heart Circ Physiol (2000) 278:H1555–64.
    1. Zeidel ML. Regulation of collecting duct Na+ reabsorption by ANP 31-67. Clin Exp Pharmacol Physiol (1995) 22:121–4.10.1111/j.1440-1681.1995.tb01967.x
    1. Gunning ME, Brady HR, Otuechere G, Brenner BM, Zeidel ML. Atrial natriuretic peptide(31-67) inhibits Na+ transport in rabbit inner medullary collecting duct cells. Role of prostaglandin E2. J Clin Invest (1992) 89:1411–7.10.1172/JCI115730
    1. Zhou Y, Yang P, Li A, Ye X, Ren S, Li X. Prostaglandin E2 reduces swine myocardial ischemia reperfusion injury via increased endothelial nitric oxide synthase and vascular endothelial growth factor expression levels. Biomed Rep (2017) 6:188–94.10.3892/br.2016.834
    1. Pang L, Cai Y, Tang EH, Irwin MG, Ma H, Xia Z. Prostaglandin E receptor subtype 4 signaling in the heart: role in ischemia/reperfusion injury and cardiac hypertrophy. J Diabetes Res (2016) 2016:1324347.10.1155/2016/1324347
    1. Goncalves N, Falcao-Pires I, Leite-Moreira AF. Adipokines and their receptors: potential new targets in cardiovascular diseases. Future Med Chem (2015) 7:139–57.10.4155/fmc.14.147
    1. Fietta P, Delsante G. Focus on adipokines. Theor Biol Forum (2013) 106:103–29.
    1. Francisco C, Neves JS, Falcao-Pires I, Leite-Moreira A. Can adiponectin help us to target diastolic dysfunction? Cardiovasc Drugs Ther (2016) 30:635–44.10.1007/s10557-016-6694-x
    1. Faxen UL, Hage C, Andreasson A, Donal E, Daubert JC, Linde C, et al. HFpEF and HFrEF exhibit different phenotypes as assessed by leptin and adiponectin. Int J Cardiol (2017) 228:709–16.10.1016/j.ijcard.2016.11.194
    1. Witberg G, Ayers CR, Turer AT, Lev E, Kornowski R, de Lemos J, et al. Relation of adiponectin to all-cause mortality, cardiovascular mortality, and major adverse cardiovascular events (from the Dallas Heart Study). Am J Cardiol (2016) 117:574–9.10.1016/j.amjcard.2015.11.067
    1. Norvik JV, Schirmer H, Ytrehus K, Jenssen TG, Zykova SN, Eggen AE, et al. Low adiponectin is associated with diastolic dysfunction in women: a cross-sectional study from the Tromso Study. BMC Cardiovasc Disord (2017) 17:79.10.1186/s12872-017-0509-2
    1. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J (2012) 33:1750–7.10.1093/eurheartj/ehr254
    1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med (2006) 355:251–9.10.1056/NEJMoa052256
    1. Goyal P, Paul T, Almarzooq ZI, Peterson JC, Krishnan U, Swaminathan RV, et al. Sex- and race-related differences in characteristics and outcomes of hospitalizations for heart failure with preserved ejection fraction. J Am Heart Assoc (2017) 6:e003330.10.1161/JAHA.116.003330
    1. Delepaul B, Robin G, Delmas C, Moine T, Blanc A, Fournier P, et al. Who are patients classified within the new terminology of heart failure from the 2016 ESC guidelines? ESC Heart Fail (2017) 4:99–104.10.1002/ehf2.12131

Source: PubMed

3
Suscribir