Effect of ertugliflozin on blood pressure in patients with type 2 diabetes mellitus: a post hoc pooled analysis of randomized controlled trials

Jie Liu, Annpey Pong, Silvina Gallo, Amanda Darekar, Steven G Terra, Jie Liu, Annpey Pong, Silvina Gallo, Amanda Darekar, Steven G Terra

Abstract

Background: The efficacy of ertugliflozin, a sodium-glucose cotransporter 2 inhibitor, for glycemic and blood pressure (BP) control has been demonstrated in phase 3 studies. To further evaluate the effects of ertugliflozin on BP and other hemodynamic parameters, an analysis was conducted on the pooled patient populations from these studies.

Methods: This was a post hoc analysis of data from three phase 3 studies (NCT01958671, NCT02033889, and NCT02036515) of adults with type 2 diabetes mellitus who received placebo, ertugliflozin 5 mg, or ertugliflozin 15 mg. Outcomes at 26 weeks were analyzed for the pooled population and according to relevant baseline factors, including BP.

Results: Of the 1544 patients included (placebo, n = 515; ertugliflozin 5 mg, n = 519; ertugliflozin 15 mg, n = 510), most (67.4-69.0%) had hypertension at baseline. Mean baseline BP was similar across treatment groups (placebo, 129.7/78.0 mmHg; ertugliflozin 5 mg, 131.0/78.4 mmHg; ertugliflozin 15 mg, 130.5/78.4 mmHg). At Week 26, placebo-adjusted least squares (LS) mean changes (95% confidence intervals [CI]) from baseline in systolic BP (SBP) were - 3.7 mmHg (- 5.1, - 2.3) for both ertugliflozin doses. Reductions were consistent across all baseline subgroups. At Week 26, more patients with a baseline SBP ≥ 130 mmHg had a SBP < 130 mmHg with ertugliflozin (38.7% both doses) than with placebo (24.0%), and more patients with a baseline SBP ≥ 140 mmHg attained a SBP < 140 mmHg with ertugliflozin (59.5% [5 mg] and 66.7% [15 mg]) than with placebo (43.8%). Placebo-adjusted LS mean changes (95% CI) in diastolic BP (DBP) with ertugliflozin 5 mg and 15 mg were - 1.8 mmHg (- 2.7, - 0.9) and - 1.6 mmHg (- 2.5, - 0.7), respectively, and in pulse rate were - 1.3 beats per minute (bpm) (- 2.2, - 0.3) and - 1.5 bpm (- 2.5, - 0.6), respectively. Greater reductions in pulse pressure, mean arterial pressure, and double product were observed with ertugliflozin than with placebo. Incidence of adverse event-related osmotic diuresis was low, but greater with ertugliflozin (2.9% [5 mg], 2.4% [15 mg]) than placebo (1.0%).

Conclusion: Ertugliflozin treatment led to reductions in SBP, DBP, and pulse rate relative to placebo. Reductions in SBP were generally consistent across the subgroups evaluated. Trial registration NCT01958671; NCT02033889; NCT02036515.

Keywords: Blood pressure; Diastolic blood pressure; Ertugliflozin; Hypertension; Pulse rate; Sodium–glucose cotransporter 2 inhibitor; Systolic blood pressure; Type 2 diabetes mellitus.

Conflict of interest statement

J.L. and A.P are employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. They may own stock in Merck & Co., Inc., Kenilworth, NJ, USA.

S.G., A.D., and S.G.T are employees and shareholders of Pfizer Inc.

Figures

Fig. 1
Fig. 1
Change from baseline in systolic blood pressure (SBP). Change from baseline in SBP at Week 26 (a) and proportion of patients with SBP < 130 mmHg and < 140 mmHg at Week 26 (b). CI confidence interval; LS least squares. *Placebo-adjusted difference in LS mean (95% CI). †Of patients with baseline SBP of ≥ 130 mmHg. ‡Of patients with baseline SBP of ≥ 140 mmHg. §Difference in response rate (95% CI)
Fig. 2
Fig. 2
Change from baseline in systolic blood pressure (SBP) by baseline SBP and antihypertensive therapy use. Change from baseline in SBP at Week 26 by baseline SBP level (a) and baseline antihypertensive therapy, diuretics, and renin–angiotensin–aldosterone system (RAAS) blocker use (b). CI confidence interval; LS least squares. *Placebo-adjusted difference in LS mean (95% CI). †Mean baseline SBP across groups was 126–127 or 132–133 mmHg in patients with or without baseline antihypertensive therapy, respectively
Fig. 3
Fig. 3
Estimate of difference from baseline in systolic blood pressure (SBP) at Week 26 by subgroup. Data are presented as n1, n2, and n3 where n1 = number of patients in the placebo group, n2 = number of patients in the ertugliflozin 5 mg group, and n3 = number of patients in the ertugliflozin 15 mg group. BMI body mass index, eGFR estimated glomerular filtration rate, HbA1c glycated hemoglobin
Fig. 4
Fig. 4
Correlation between systolic blood pressure (SBP) and glycated hemoglobin (HbA1c) and body weight. Change from baseline in SBP at Week 26 versus change from baseline in HbA1c at Week 26 (a) and change from baseline in body weight at Week 26 (b). HbA1c glycated hemoglobin
Fig. 5
Fig. 5
Change from baseline in sitting diastolic blood pressure (DBP) and pulse rate at Week 26. Change from baseline in sitting DBP at Week 26 (a) and change from baseline in sitting pulse rate at Week 26 (b). CI confidence interval, LS least squares. *Placebo-adjusted difference in LS mean (95% CI)

References

    1. American Diabetes Association Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S86–S104. doi: 10.2337/dc18-S009.
    1. de Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, Rossing P, Zoungas S, Bakris G. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:1273–1284. doi: 10.2337/dci17-0026.
    1. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018;71:e127–e248. doi: 10.1016/j.jacc.2017.11.006.
    1. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2018;41:2669–2701. doi: 10.2337/dci18-0033.
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Can J Diabetes. 2018;39:3021–3104.
    1. Lesniak W, Bala MM, Placzkiewicz-Jankowska E, Topor-Madry R, Jankowski M, Sieradzki J, Banasiak W. Cardiovascular risk management in type 2 diabetes of more than 10-year duration: results of Polish ARETAEUS2-Grupa Study. Cardiol J. 2015;22:150–159. doi: 10.5603/CJ.a2014.0067.
    1. Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care. 2013;36:2271–2279. doi: 10.2337/dc12-2258.
    1. Vouri SM, Shaw RF, Waterbury NV, Egge JA, Alexander B. Prevalence of achievement of A1c, blood pressure, and cholesterol (ABC) goal in veterans with diabetes. J Manag Care Pharm. 2011;17:304–312.
    1. Nelson SA, Dresser GK, Vandervoort MK, Wong CJ, Feagan BG, Mahon JL, Feldman RD. Barriers to blood pressure control: a STITCH substudy. J Clin Hypertens (Greenwich). 2011;13:73–80. doi: 10.1111/j.1751-7176.2010.00392.x.
    1. Briasoulis A, Al Dhaybi O, Bakris GL. SGLT2 inhibitors and mechanisms of hypertension. Curr Cardiol Rep. 2018;20:1. doi: 10.1007/s11886-018-0943-5.
    1. Pfeifer M, Townsend RR, Davies MJ, Vijapurkar U, Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol. 2017;16:29. doi: 10.1186/s12933-017-0511-0.
    1. Cherney DZI, Cooper ME, Tikkanen I, Pfarr E, Johansen OE, Woerle HJ, Broedl UC, Lund SS. Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 2018;93:231–244. doi: 10.1016/j.kint.2017.06.017.
    1. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, Broedl UC, Johansen OE. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016;68:1355–1364. doi: 10.1161/HYPERTENSIONAHA.116.07703.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925.
    1. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:356–363. doi: 10.2337/dc17-1096.
    1. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–1122. doi: 10.2337/dc16-0542.
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;24:347–357. doi: 10.1056/NEJMoa1812389.
    1. Rosenstock J, Frias J, Pall D, Charbonnel B, Pascu R, Saur D, Darekar A, Huyck S, Shi H, Lauring B, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET) Diabetes Obes Metab. 2018;20:520–529. doi: 10.1111/dom.13103.
    1. Dagogo-Jack S, Liu J, Eldor R, Amorin G, Johnson J, Hille D, Liao Y, Huyck S, Golm G, Terra SG, et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: the VERTIS SITA2 placebo-controlled randomized study. Diabetes Obes Metab. 2018;20:530–540. doi: 10.1111/dom.13116.
    1. Pratley RE, Eldor R, Raji A, Golm G, Huyck SB, Qiu Y, Sunga S, Johnson J, Terra SG, Mancuso JP, et al. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: the VERTIS FACTORIAL randomized trial. Diabetes Obes Metab. 2018;20:1111–1120. doi: 10.1111/dom.13194.
    1. Miller S, Krumins T, Zhou H, Huyck S, Johnson J, Golm G, Terra SG, Mancuso JP, Engel SS, Lauring B. Ertugliflozin and sitagliptin co-initiation in patients with type 2 diabetes: the VERTIS SITA randomized study. Diabetes Ther. 2018;9:253–268. doi: 10.1007/s13300-017-0358-0.
    1. Terra SG, Focht K, Davies M, Frias J, Derosa G, Darekar A, Golm G, Johnson J, Saur D, Lauring B, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab. 2017;19:721–728. doi: 10.1111/dom.12888.
    1. American Diabetes Association Executive summary: standards of medical care in diabetes-2012. Diabetes Care. 2012;35(Suppl 1):S4–S10.
    1. Liang K-Y, Zeger SL. Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhyā. 2000;62:134–148.
    1. Miettinen O, Nurminen M. Comparative analysis of two rates. Stat Med. 1985;4:213–226. doi: 10.1002/sim.4780040211.
    1. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4:211–220. doi: 10.1016/S2213-8587(15)00417-9.
    1. Weber MA, Mansfield TA, Alessi F, Iqbal N, Parikh S, Ptaszynska A. Effects of dapagliflozin on blood pressure in hypertensive diabetic patients on renin–angiotensin system blockade. Blood Press. 2016;25:93–103. doi: 10.3109/08037051.2015.1116258.
    1. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium–glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–794. doi: 10.1111/dom.12670.
    1. Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6:e009417. doi: 10.1136/bmjopen-2015-009417.
    1. Davies MJ, Merton K, Vijapurkar U, Yee J, Qiu R. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: a post hoc analysis of pooled data. Cardiovasc Diabetol. 2017;16:40. doi: 10.1186/s12933-017-0517-7.
    1. Gallo S, Charbonnel B, Goldman A, Shi H, Huyck S, Darekar A, Lauring B, Terra SG. Long-term efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: 104-week VERTIS MET trial. Diabetes Obes Metab. 2019 doi: 10.1111/dom.13631.
    1. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium–glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6:e004007. doi: 10.1161/JAHA.116.004007.
    1. Hollander P, Liu J, Hill J, Johnson J, Jiang ZW, Golm G, Huyck S, Terra SG, Mancuso JP, Engel SS, et al. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther. 2018;9:193–207. doi: 10.1007/s13300-017-0354-4.
    1. Amin NB, Wang X, Mitchell JR, Lee DS, Nucci G, Rusnak JM. Blood pressure-lowering effect of the sodium glucose co-transporter-2 inhibitor ertugliflozin, assessed via ambulatory blood pressure monitoring in patients with type 2 diabetes and hypertension. Diabetes Obes Metab. 2015;17:805–808. doi: 10.1111/dom.12486.
    1. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, Carbone S, Abbate A, Dixon DL. Effects of sodium–glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e005686.
    1. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M, Kubozono T, Ohishi M. Mechanism of the blood pressure-lowering effect of sodium–glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18:23. doi: 10.1186/s40360-017-0125-x.
    1. Petersen KS, Blanch N, Keogh JB, Clifton PM. Effect of weight loss on pulse wave velocity: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35:243–252. doi: 10.1161/ATVBAHA.114.304798.
    1. Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, Martinez-Lemus L, Manrique-Acevedo CM, Hayden MR, Duta C, et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol. 2018;17:108. doi: 10.1186/s12933-018-0750-8.
    1. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180–1193. doi: 10.1111/dom.12572.
    1. Cockcroft JR, Wilkinson IB, Evans M, McEwan P, Peters JR, Davies S, Scanlon MF, Currie CJ. Pulse pressure predicts cardiovascular risk in patients with type 2 diabetes mellitus. Am J Hypertens. 2005;18:1463–1467. doi: 10.1016/j.amjhyper.2005.05.009.
    1. Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379:633–644. doi: 10.1056/NEJMoa1800256.
    1. Cannon CP, McGuire DK, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Charbonnel B, Shih WJ, Gallo S, Masiukiewicz U, et al. Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV) Am Heart J. 2018;206:11–23. doi: 10.1016/j.ahj.2018.08.016.
    1. Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care. 2015;38:1218–1227. doi: 10.2337/dc14-0315.
    1. Reed JW. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag. 2016;12:393–405. doi: 10.2147/VHRM.S111991.
    1. Fleg JL, Evans GW, Margolis KL, Barzilay J, Basile JN, Bigger JT, Cutler JA, Grimm R, Pedley C, Peterson K, et al. Orthostatic hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) blood pressure trial: prevalence, incidence, and prognostic significance. Hypertension. 2016;68:888–895. doi: 10.1161/HYPERTENSIONAHA.116.07474.

Source: PubMed

3
Suscribir