Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats

Yuanyuan Deng, Long Long, Keke Wang, Jiayin Zhou, Lingrong Zeng, Lianzi He, Qihai Gong, Yuanyuan Deng, Long Long, Keke Wang, Jiayin Zhou, Lingrong Zeng, Lianzi He, Qihai Gong

Abstract

Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.

Keywords: Alzheimer’s disease; ICS II; apoptosis; beta-amyloid; neuroinflammation.

Figures

FIGURE 1
FIGURE 1
Icariside II ameliorated Aβ25-35-induced learning and memory impairments. Rats were slowly injected Aβ25-35 or vehicle bilaterally into each lateral ventricle and then given 20 mg/kg ICS II for 15 days. Morris water maze was performed for 5 consecutive days from day 11 after surgery. (A) The escape latency of the rats to reach the hidden platform from days 1 to 4. (B) The time spent in the target quadrant and the frequency crossing the target quadrant. (C) The percentage of the time spent in target quadrant on the 5th day. (D) The average swimming speed. Data were expressed as mean ± SEM (n = 10∼12). ∗P < 0.05, ∗∗P < 0.01 vs. sham; #P < 0.05 vs. Aβ alone.
FIGURE 2
FIGURE 2
Icariside II attenuated Aβ25-35-induced morphological alterations in the hippocampus. (A–D) The sections of hippocampus CA1 region were obtained and stained with HE (magnification 400×, scale bar = 20 μm).
FIGURE 3
FIGURE 3
Icariside II protected against Aβ25-35-induced neuronal death in the hippocampus. (A–D) Nissl staining of hippocampus CA1 region sections (magnification 400×, scale bar 50 μm). (E) Quantitative analysis of Nissl bodies in the hippocampus CA1 region. Data were expressed as mean ± SEM, n = 4. ∗∗P < 0.01 vs. sham; #P < 0.05 vs. Aβ alone.
FIGURE 4
FIGURE 4
Icariside II improved Aβ25-35-induced neuronal apoptosis in the hippocampus. (A–D) TUNEL staining of hippocampus CA1 region sections (magnification 400×, scale bar 50 μm) and (E) quantitative analysis of apoptotic cells in the hippocampus CA1 region. Data were expressed as mean ± SEM, n = 4. ∗∗P < 0.01 vs. sham; ##P < 0.01 vs. Aβ alone.
FIGURE 5
FIGURE 5
Icariside II inhibited Aβ1-40 levels in the hippocampus of Aβ25-35-induced rats. Aβ1-40 levels were examined by Western blot. (A) The antibody-reactive band of the Aβ1-40.(B) Quantitative analysis of Aβ1-40 levels. Data were expressed as mean ± SEM (n = 3). ∗∗P < 0.01 vs. sham; ##P < 0.01 vs. Aβ alone.
FIGURE 6
FIGURE 6
Icariside II attenuated astrocytes and microglia response after Aβ injection. (A) GFAP immunoreactivity of hippocampus CA1 and DG region. (B) and (C) GFAP OD and number of astrocytes. (D) IBA-1 immunoreactivity of hippocampus CA1 and DG region. (E) and (F) IBA-1 OD and number of microglia. Magnification 400×, scale bar = 50 μm. Data were expressed as mean ± SEM, n = 4. ∗P < 0.05, ∗∗P < 0.01 vs. sham; #P < 0.05, ##P < 0.01 vs. Aβ alone.
FIGURE 7
FIGURE 7
Icariside II decreased the mRNA expression of TNF-α, IL-1β, COX-2, and iNOS after Aβ injection. The expression of TNF-α, IL-1β, COX-2, and iNOS mRNA was examined by real time RT-PCR. (A) TNF-α mRNA; (B) IL-1β mRNA; (C) COX-2 mRNA; (D) iNOS mRNA. Data were expressed as mean ± SEM (n = 6). ∗P < 0.05, ∗∗P < 0.01 vs. sham; ##P < 0.01 vs. Aβ alone.
FIGURE 8
FIGURE 8
Icariside II prevented the protein expression of TNF-α, IL-1β, COX-2, and iNOS after Aβ injection. The expressions of TNF-α, IL-1β, COX-2, and iNOS protein were detected by Western blot analysis. (A) The antibody-reactive band of the TNF-α, IL-1β, COX-2, and iNOS, respectively. (B) Quantitative analysis of TNF-α protein; (C) Quantitative analysis of IL-1β protein; (D) Quantitative analysis of COX-2 protein; (E) Quantitative analysis of iNOS protein. The relative OD was normalized to β-actin. Data presented as mean ± SEM, n = 3. ∗P < 0.05, ∗∗P < 0.01 vs. sham; #P < 0.05, ##P < 0.01 vs. Aβ alone.
FIGURE 9
FIGURE 9
Icariside II reduced the Bax/Bcl-2 ratio in the hippocampus of Aβ25-35-induced rats. (A) Representative bands of Bax and Bcl-2 of different groups. (B) Bax/Bcl-2 ratio. The relative OD was normalized to β-actin. Data were expressed as mean ± SEM (n = 3). ∗∗P < 0.01 vs. sham; ##P < 0.01 vs Aβ alone.
FIGURE 10
FIGURE 10
Icariside II repressed the Aβ-induced activation of caspase-3. (A) The antibody-reactive band of pro and active-caspase-3. (B) Quantitative analysis of pro-caspase-3. (C) Quantitative analysis of active-caspase-3. The relative OD was normalized to β-actin. Data were expressed as mean ± SEM (n = 3). ∗P < 0.05, ∗∗P < 0.01 vs. sham; ##P < 0.01 vs. Aβ alone.

References

    1. Abdi A., Sadraie H., Dargahi L., Khalaj L., Ahmadiani A. (2011). Apoptosis inhibition can be threatening in Aβ-induced neuroinflammation, through promoting cell proliferation. Neurochem. Res. 36 39–48. 10.1007/s11064-010-0259-3
    1. Alzheimer’s Association (2015). 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. J. Alzheimers Assoc. 11 332–384. 10.1016/j.jalz.2015.02.003
    1. Arief Z. M., Munshi A. H., Shawl A. S. (2015). Evaluation of medicinal value of Epimedium elatum on the basis of pharmacologically active constituents, Icariin and Icariside-II. Pak. J. Pharm. Sci. 28 1665–1669.
    1. Bamberger M. E., Landreth G. E. (2002). Inflammation, apoptosis, and Alzheimer’s disease. Neuroscientist 8 276–283. 10.1177/10758402008003013
    1. Barnabas James G. (1997). Republished: the role of amyloid β in the pathogenesis of Alzheimer’s disease. J. Clin. Pathol. 378 937–950.
    1. Bona D., Scapagnini G., Candore G., Castiglia L., Colonna-Romano G., Duro G., et al. (2010). Immune-inflammatory responses and oxidative stress in Alzheimer’s disease: therapeutic implications. Curr. Pharm. Des. 16 684–691. 10.2174/138161210790883769
    1. Breitner J. C. S., Haneuse S. J. P. A., Walker R., Dublin S., Crane P. K., Gray S. L., et al. (2009). Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72 1899–1905. 10.1212/WNL.0b013e3181a18691
    1. Cai W.-J., Huang J.-H., Zhang S.-Q., Wu B., Kapahi P., Zhang X.-M., et al. (2011). Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS ONE 6:e28835 10.1371/journal.pone.0028835
    1. Chen Q. S., Kagan B. L., Hirakura Y., Xie C. W. (2000). Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides. J. Neurosci. Res. 60 65–72. 10.1002/(SICI)1097-4547(20000401)60:1<65::AID-JNR7<;2-Q
    1. Cheng G., Whitehead S. N., Hachinski V., Cechetto D. F. (2006). Effects of pyrrolidine dithiocarbamate on beta-amyloid (25–35)-induced inflammatory responses and memory deficits in the rat. Neurobiol. Dis. 23 140–151. 10.1016/j.nbd.2006.02.008
    1. Christoph H., Uwe K., Streffer J. R., Jay T., Andri S., Britta M. T., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38 547–554. 10.1016/S0896-6273(03)00294-0
    1. Clementi M. E., Marini S., Coletta M., Orsini F., Giardina B., Misiti F. (2005). Aβ (31–35) and Aβ (25–35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett. 579 2913–2918. 10.1016/j.febslet.2005.04.041
    1. Czabotar P. E., Lessene G., Strasser A., Adams J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15 49–63. 10.1038/nrm3722
    1. Dean D. N., Pate K. M., Moss M. A., Rangachari V. (2016). Conformational dynamics of specific Aβ oligomers govern their ability to replicate and induce neuronal apoptosis. Biochemistry 55 2238–2250. 10.1021/acs.biochem.6b00161
    1. Deng Y., Xiong D., Yin C., Liu B., Shi J., Gong Q. (2016). Icariside II protects against cerebral ischemia-reperfusion injury in rats via nuclear factor-κB inhibition and peroxisome proliferator-activated receptor up-regulation. Neurochem. Int. 96 56–61. 10.1016/j.neuint.2016.02.015
    1. Diaz A., Limon D., Chávez R., Zenteno E., Guevara J. (2012). Aβ25-35 injection into the temporal cortex induces chronic inflammation that contributes to neurodegeneration and spatial memory impairment in rats. J. Alzheimers Dis. 30 505–522. 10.3233/JAD-2012-111979
    1. Driver J. A. (2012). Understanding the link between cancer and neurodegeneration. J. Geriatr. Oncol. 3 58–67. 10.1016/j.jgo.2011.11.007
    1. Eikelenboom P., Van Exel E., Hoozemans J. J., Veerhuis R., Rozemuller A. J., Van Gool W. A. (2010). Neuroinflammation–an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener. Dis. 7 38–41. 10.1159/000283480
    1. Frozza R. L., Horn A. P., Hoppe J. B., Simão F., Gerhardt D., Comiran R. A., et al. (2009). A comparative study of β-amyloid peptides Aβ1-42 and Aβ25-35 toxicity in organotypic hippocampal slice cultures. Neurochem. Res. 34 295–303. 10.1007/s11064-008-9776-8
    1. Gong Q. H., Wang Q. L., Liu X. H., Huang H., Zhu Y. Z. (2010). Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96 52–58. 10.1016/j.pbb.2010.04.006
    1. Gouras G. K., Olsson T. T., Hansson O. (2014). β-amyloid peptides and amyloid plaques in Alzheimer’s Disease. J. Am. Soc. Exp. Neurother. 12 1–9.
    1. Huang T.-C., Lu K.-T., Wo Y.-Y. P., Wu Y.-J., Yang Y.-L. (2011). Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS ONE 6:e29102 10.1371/journal.pone.0029102
    1. Jie S., Liang F., Zhong R., Zhi X., Li Z., Li C., et al. (2016). Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol. Carcinog. 56 36–48. 10.1002/mc.22471
    1. Jin F., Gong Q. H., Xu Y. S., Wang L. N., Jin H., Li F., et al. (2014). Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int. J. Neuropsychopharmacol. 17 871–881. 10.1017/S1461145713001533
    1. Joan V. F., Secundino L. P., Laia C. P., Josep G. O. (2013). Psychosis of Alzheimer disease: prevalence, incidence, persistence, risk factors, and mortality. Am. J. Geriatr. Psychiatry 21 1135–1143. 10.1016/j.jagp.2013.01.051
    1. Jun-Xia L., Wei Q., Wai-Ming Y., Schwieters C. D., Meredith S. C., Robert T. (2013). Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154 1257–1268. 10.1016/j.cell.2013.08.035
    1. Kitamura Y., Shimohama S., Kamoshima W., Ota T., Matsuoka Y., Nomura Y., et al. (1998). Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res. 780 260–269.
    1. Kruppa A. J., Ott S., Chandraratna D. S., Irving J. A., Page R. M., Speretta E., et al. (2013). Suppression of Aβ toxicity by puromycin-sensitive aminopeptidase is independent of its proteolytic activity. Biochim. Biophys. Acta 1832 2115–2126. 10.1016/j.bbadis.2013.07.019
    1. LeBlanc A. C. (2005). The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Cur. Alzheimer Res. 2 389–402. 10.2174/156720505774330573
    1. Lee K. S., Lee H. J., Ahn K. S., Kim S. H., Nam D., Kim D. K., et al. (2009). Cyclooxygenase-2/prostaglandin E 2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett. 280 93–100. 10.1016/j.canlet.2009.02.024
    1. Li W., Deng Y., Shi J., Li F., Liu B., Gong Q. (2014). Icariin ameliorates spatial learning and memory impairments through upregulating the expressions of PPARα and PGC-1α protein in chronic cerebral hypoperfusion rat model. J. Zunyi Med. Univ. 37 591–594.
    1. Li W.-X., Deng Y.-Y., Li F., Liu B., Liu H.-Y., Shi J.-S., et al. (2015). Icariin, a major constituent of flavonoids from Epimedium brevicornum, protects against cognitive deficits induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. Pharmacol. Biochem. Behav. 138 40–48. 10.1016/j.pbb.2015.09.001
    1. Liu H., Deng Y., Gao J., Liu Y., Shi J., Gong Q. (2015). Sodium hydrosulfide attenuates beta-amyloid-induced cognitive deficits and neuroinflammation via modulation of MAPK/NF-κB pathway in rats. Curr. Alzheimer Res. 12 673–683. 10.2174/1567205012666150713102326
    1. Louneva N., Cohen J. W., Han L.-Y., Talbot K., Wilson R. S., Bennett D. A., et al. (2008). Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 173 1488–1495. 10.2353/ajpath.2008.080434
    1. Matsuoka Y., Picciano M., Malester B., Lafrancois J., Zehr C., Daeschner J. M., et al. (2001). Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol. 158 1345–1354. 10.1016/S0002-9440(10)64085-0
    1. Mattson M. P. (2000). Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1 120–130. 10.1038/35040009
    1. Meng F.-H., Li Y.-B., Xiong Z.-L., Jiang Z.-M., Li F.-M. (2005). Osteoblastic proliferative activity of < i > Epimedium brevicornum < /i > maxim. Phytomedicine 12 189–193. 10.1016/j.phymed.2004.03.007
    1. Miao J., Zhang W., Yin R., Liu R., Su C., Lei G., et al. (2008). S14G-Humanin ameliorates Aβ25-35-induced behavioral deficits by reducing neuroinflammatory responses and apoptosis in mice. Neuropeptides 42 557–567. 10.1016/j.npep.2008.08.004
    1. Minghetti L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63 901–910. 10.1093/jnen/63.9.901
    1. Morales I., Farias G., Maccioni R. B. (2010). Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. Neuroimmunomodulation 17 202–204. 10.1159/000258724
    1. Nie J., Luo Y., Huang X. N., Gong Q. H., Wu Q., Shi J. S. (2010). Icariin inhibits beta-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur. J. Pharmacol. 626 213–218. 10.1016/j.ejphar.2009.09.039
    1. Paula A., Cunha R. A., Catarina O. (2010). Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 16 2766–2778. 10.2174/138161210793176572
    1. Pike C. J., Walencewicz-Wasserman A. J., Joseph K., Cribbs D. H., Glabe C. G., Cotman C. W. (1995). Structure-activity analyses of β-amyloid peptides: contributions of the β25–35 region to aggregation and neurotoxicity. J. Neurochem. 64 253–265. 10.1046/j.1471-4159.1995.64010253.x
    1. Plunfavreau H., Lewis P. A., Hardy J., Martins L. M., Wood N. W. (2010). Cancer and neurodegeneration: between the devil and the deep blue sea. PloS Genet. 6:e1001257 10.1371/journal.pgen.1001257
    1. Potter P. E. (2010). Investigational medications for treatment of patients with Alzheimer disease. J. Am. Osteopath. Assoc. 110 S27–S36.
    1. Reale M., Brenner T., Greig N. H., Inestrosa N., Paleacu D. (2010). Neuroinflammation, AD, and dementia. Int. J. Alzheimers Dis. 2010:974026 10.4061/2010/974026
    1. Sastre M., Klockgether T., Heneka M. T. (2006). Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci. 24 167–176. 10.1016/j.ijdevneu.2005.11.014
    1. Saur L., Baptista P. P. A., Senna P. N. D., Paim M. F., Nascimento P. D., Ilha J., et al. (2014). Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct. Funct. 219 293–302. 10.1007/s00429-012-0500-8
    1. Shie F.-S., Leboeur R. C., Jin L.-W. (2003). Early intraneuronal Aβ deposition in the hippocampus of APP transgenic mice. Neuroreport 14 123–129. 10.1097/00001756-200301200-00023
    1. Song J., Shu L., Zhang Z., Tan X., Sun E., Jin X., et al. (2012). Reactive oxygen species-mediated mitochondrial pathway is involved in baohuoside I-induced apoptosis in human non-small cell lung cancer. Chem. Biol. Interact. 199 9–17. 10.1016/j.cbi.2012.05.005
    1. Srivareerat M., Tran T. T., Salim S., Aleisa A. M., Alkadhi K. A. (2011). Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol. Aging 32 834–844. 10.1016/j.neurobiolaging.2009.04.015
    1. Stepanichev M. Y., Zdobnova I. M., Zarubenko I. I., Moiseeva Y. V., Lazareva N. A., Onufriev M. V., et al. (2004). Amyloid-β(25–35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol. Behav. 80 647–655. 10.1016/j.physbeh.2003.11.003
    1. Suh Y. H., Checler F. (2002). Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol. Rev. 54 469–525. 10.1124/pr.54.3.469
    1. Sze S. C. W., Tong Y., Ng T. B., Cheng C. L. Y., Cheung H. P. (2010). Herba Epimedii: anti-oxidative properties and its medical implications. Molecules 15 7861–7870. 10.3390/molecules15117861
    1. Thal D. R., Griffin W. S. T., Braak H. (2008). Parenchymal and vascular Aβ-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. J. Cell Mol. Med. 12 1848–1862. 10.1111/j.1582-4934.2008.00411.x
    1. Townsend K. P., Domenico P. (2005). Novel therapeutic opportunities for Alzheimer’s disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J. 19 1592–1601. 10.1096/fj.04-3620rev
    1. Tuppo E. E., Arias H. R. (2005). The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 37 289–305. 10.1016/j.biocel.2004.07.009
    1. Urano T., Tohda C. (2010). Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy. Phytother. Res. 24 1658–1663. 10.1002/ptr.3183
    1. Vorhees C. V., Williams M. T. (2005). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1 848–858. 10.1038/nprot.2006.116
    1. Wang C., Yang X. M., Zhuo Y. Y., Zhou H., Lin H. B., Cheng Y. F., et al. (2012). The phosphodiesterase-4 inhibitor rolipram reverses Aβ-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats. Int. J. Neuropsychopharmacol. 15 749–766. 10.1017/S1461145711000836
    1. Wei-Na H., Christian H. L., Li Y., Wei Y., Xiao-Hui W., Mei-Na W., et al. (2013). Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol. Aging 34 576–588. 10.1016/j.neurobiolaging.2012.04.009
    1. Wu J., Song T., Liu S., Li X., Li G., Xu J. (2015). Icariside II inhibits cell proliferation and induces cell cycle arrest through the ROS-p38-p53 signaling pathway in A375 human melanoma cells. Mol. Med. Rep. 11 410–416. 10.3892/mmr.2014.2701
    1. Xiao P.-G., Xing S.-T., Wang L.-W. (1993). Immunological aspects of Chinese medicinal plants as antiageing drugs. J. Ethnopharmacol. 38 159–165. 10.1016/0378-8741(93)90012-T
    1. Yan B. Y., Pan C. S., Mao X. W., Yang L., Liu Y. Y., Yan L., et al. (2014). Icariside II improves cerebral microcirculatory disturbance and alleviates hippocampal injury in gerbils after ischemia–reperfusion. Brain Res. 1573 63–73. 10.1016/j.brainres.2014.05.023
    1. Yao M., Nguyen T., Pike C. J. (2007). Estrogen regulates Bcl-w and bim expression: role in protection against β-amyloid peptide-induced neuronal death. J. Neurosci. 27 1422–1433. 10.1523/JNEUROSCI.2382-06.2007
    1. Yin C., Deng Y., Gao J., Li X., Liu Y., Gong Q. (2016). Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats. Neuroscience 328 69–79. 10.1016/j.neuroscience.2016.04.022
    1. Yoon S. S., Ahn Jo S. (2012). Mechanisms of amyloid-β peptide clearance: potential therapeutic targets for Alzheimer’s Disease. Biomol. Ther. (Seoul) 20 245–255. 10.4062/biomolther.2012.20.3.245

Source: PubMed

3
Suscribir