Predictors of Segmented School Day Physical Activity and Sedentary Time in Children from a Northwest England Low-Income Community

Sarah L Taylor, Whitney B Curry, Zoe R Knowles, Robert J Noonan, Bronagh McGrane, Stuart J Fairclough, Sarah L Taylor, Whitney B Curry, Zoe R Knowles, Robert J Noonan, Bronagh McGrane, Stuart J Fairclough

Abstract

Schools have been identified as important settings for health promotion through physical activity participation, particularly as children are insufficiently active for health. The aim of this study was to investigate the child and school-level influences on children's physical activity levels and sedentary time during school hours in a sample of children from a low-income community; Methods: One hundred and eighty-six children (110 boys) aged 9-10 years wore accelerometers for 7 days, with 169 meeting the inclusion criteria of 16 h∙day-1 for a minimum of three week days. Multilevel prediction models were constructed to identify significant predictors of sedentary time, light, and moderate to vigorous physical activity during school hour segments. Child-level predictors (sex, weight status, maturity offset, cardiorespiratory fitness, physical activity self-efficacy, physical activity enjoyment) and school-level predictors (number on roll, playground area, provision score) were entered into the models; Results: Maturity offset, fitness, weight status, waist circumference-to-height ratio, sedentary time, moderate to vigorous physical activity, number of children on roll and playground area significantly predicted physical activity and sedentary time; Conclusions: Research should move towards considering context-specific physical activity and its correlates to better inform intervention strategies.

Keywords: accelerometer; children; physical activity; schools.

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Janssen I., Leblanc A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010 doi: 10.1186/1479-5868-7-40.
    1. Andersen L.B., Riddoch C., Kriemler S., Hills A. Physical activity and cardiovascular risk factors in children. Br. J. Sports Med. 2011;45:871–876. doi: 10.1136/bjsports-2011-090333.
    1. Boddy L.M., Murphy M.H., Cunningham C., Breslin G., Foweather L., Gobbi R., Graves L.E.F., Hopkins N.D., Auth M.K.H., Stratton G. Physical activity, cardiorespiratory fitness, and clustered cardiometabolic risk in 10- to 12-year-old school children: The REACH Y6 study. Am. J. Hum. Biol. 2014;26:446–451. doi: 10.1002/ajhb.22537.
    1. Lubans D., Richards J., Hillman C., Faulkner G., Beauchamp M., Nilsson M., Kelly P., Smith J., Raine L., Biddle S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics. 2016 doi: 10.1542/peds.2016-1642.
    1. Department of Health, Physical Activity, Health Improvement and Protection Start Active, Stay Active: A Report on Physical Activity from the Four Home Countries′ Chief Medical Officers. [(accessed on 29 March 2017)]; Available online: .
    1. 2008 Physical Activity Guidelines for Americans Services. [(accessed on 29 March 2017)]; Available online: .
    1. Make Your Move––Sit Less––Be Active for Life! Australia’s Physical Activity and Sedentary Behaviour Guidelines for Children (5–12 Years) [(accessed on 29 March 2017)]; Available online: .
    1. Tremblay M.S., Barnes J.D., Gonzalez S.A., Katzmarzyk P.T., Onywera V.O., Reilly J.J., Tomkinson G.R. Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Comparing 38 Countries. J. Phys. Act. Health. 2016;13:S343–S366. doi: 10.1123/jpah.2016-0594.
    1. Cooper A.R., Goodman A., Page A.S., Sherar L.B., Esliger D.W., van Sluijs E.M.F., Andersen L.B., Anderssen S., Cardon G., Davey R., et al. Objectively measured physical activity and sedentary time in youth: The International children’s accelerometry database (ICAD) Int. J. Behav. Nutr. Phys. Act. 2015 doi: 10.1186/s12966-015-0274-5.
    1. Ekelund U., Tomkinson G., Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br. J. Sports Med. 2011;45:859–865. doi: 10.1136/bjsports-2011-090190.
    1. Saunders T.J., Chaput J.-P., Tremblay M.S. Sedentary Behaviour as an Emerging Risk Factor for Cardiometabolic Diseases in Children and Youth. Can. J. Diabetes. 2014;38:53–61. doi: 10.1016/j.jcjd.2013.08.266.
    1. Tremblay M.S., Carson V., Chaput J.P., Connor Gorber S., Dinh T., Duggan M., Faulkner G., Gray C.E., Gruber R., Janson K., et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2016;41:S311–S327. doi: 10.1139/apnm-2016-0151.
    1. Carson V., Hunter S., Kuzik N., Gray C.E., Poitras V.J., Chaput J.P., Saunders T.J., Katzmarzyk P.T., Okely A.D., Connor Gorber S., et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nut. Metab. 2016;41:S240–S265. doi: 10.1139/apnm-2015-0630.
    1. Ekris E., Altenburg T.M., Singh A.S., Proper K.I., Heymans M.W., Chinapaw M.J.M. An evidence-update on the prospective relationship between childhood sedentary behaviour and biomedical health indicators: A systematic review and meta-analysis. Obes. Rev. 2016;17:833–849. doi: 10.1111/obr.12426.
    1. Suchert V., Hanewinkel R., Isensee B. Sedentary behavior and indicators of mental health in school-aged children and adolescents: A systematic review. Prev. Med. 2015;76:48–57. doi: 10.1016/j.ypmed.2015.03.026.
    1. The National Academies Press . Educating the Student Body: Taking Physical Activity and Physical Education to School. The National Academies Press; Washington, DC, USA: 2013.
    1. Ridgers N.D., Stratton G., Fairclough S.J. Physical activity levels of children during school playtime. Sports Med. 2006;36:359–371. doi: 10.2165/00007256-200636040-00005.
    1. Meyer U., Roth R., Zahner L., Gerber M., Puder J.J., Hebestreit H., Kriemler S. Contribution of physical education to overall physical activity. Scand. J. Med. Sci. Sports. 2013;23:600–606. doi: 10.1111/j.1600-0838.2011.01425.x.
    1. Fox K.R., Cooper A., McKenna J. The School and Promotion of Children′s Health-Enhancing Physical Activity: Perspectives from the United Kingdom. J. Teach. Phys. Educ. 2004;23:338–358. doi: 10.1123/jtpe.23.4.338.
    1. Naylor P.J., McKay H.A. Prevention in the first place: Schools a setting for action on physical inactivity. Br. J. Sports Med. 2009;43:10–13. doi: 10.1136/bjsm.2008.053447.
    1. Center for Chronic Disease Prevention and Health Promotion . Comprehensive School Physical Activity Programs: A Guide for Schools. Center for Chronic Disease Prevention and Health Promotion; Atlanta, GA, USA: 2013.
    1. Tandon P.S., Zhou C., Sallis J.F., Cain K.L., Frank L.D., Saelens B.E. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int. J. Behav. Nutr. Phys. Act. 2012 doi: 10.1186/1479-5868-9-88.
    1. Seabra A., Mendonca D., Maia J., Welk G., Brustad R., Fonseca A.M., Seabra A.F. Gender, weight status and socioeconomic differences in psychosocial correlates of physical activity in schoolchildren. J. Sci. Med. Sport. 2013;16:320–326. doi: 10.1016/j.jsams.2012.07.008.
    1. Drenowatz C., Eisenmann J.C., Pfeiffer K.A., Welk G., Heelan K., Gentile D., Walsh D. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health. 2010 doi: 10.1186/1471-2458-10-214.
    1. Stalsberg R., Pedersen A.V. Effects of socioeconomic status on the physical activity in adolescents: A systematic review of the evidence. Scand. J. Med. Sci. Sports. 2010 doi: 10.1111/j.1600-0838.2009.01047.x.
    1. Sallis J.F., Prochaska J.J., Taylor W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000;32:963–975. doi: 10.1097/00005768-200005000-00014.
    1. Bauman A.E., Reis R.S., Sallis J.F., Wells J.C., Loos R.J.F., Martin B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet. 2012 doi: 10.1016/S0140-6736(12)60735-1.
    1. Sterdt E., Liersch S., Walter U. Correlates of physical activity of children and adolescents: A systematic review of reviews. Health Educ. Res. 2013;73:72–89. doi: 10.1177/0017896912469578.
    1. Stanley R.M., Ridley K., Dollman J. Correlates of children′s time-specific physical activity: A review of the literature. Int. J. Behav. Nutr. Phys. Act. 2012 doi: 10.1186/1479-5868-9-50.
    1. Childhood Obesity: A Plan for Action. [(accessed on 29 March 2017)]; Available online: .
    1. Collins S. Seven Wards: A Focus on Skelmersdale. [(accessed on 29 March 2017)]; Available online: .
    1. Cole T.J., Freeman J., Preece M.A. Body mass index reference curves for the UK, 1990. Arch. Dis. Child. 1995;73:25–29. doi: 10.1136/adc.73.1.25.
    1. Cole T.J., Bellizzi M.C., Flegal K.M., Dietz W.H. Establishing a standard definition for child overweight and obesity worldwide: international survey. Br. Med. J. 2000;320:1240–1243. doi: 10.1136/bmj.320.7244.1240.
    1. Moore S.A., McKay H.A., Macdonald H., Nettlefold L., Baxter-Jones A.D., Cameron N., Brasher P.M. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015;47:1755–1764. doi: 10.1249/MSS.0000000000000588.
    1. Mehta S.K. Waist circumference to height ratio in children and adolescents. Clin. Pediatr. 2015;54:652–658. doi: 10.1177/0009922814557784.
    1. The English Indicies of Deprivation 2015. [(accessed on 29 March 2017)]; Available online: .
    1. Motl R.W., Dishman R.K., Trost S.G., Saunders R.P., Dowda M., Felton G., Ward D.S., Pate R.R. Factorial Validity and Invariance of Questionnaires Measuring Social-Cognitive Determinants of Physical Activity among Adolescent Girls. Prev. Med. 2000;31:584–594. doi: 10.1006/pmed.2000.0735.
    1. Motl R.W., Dishman R.K., Saunders R., Dowda M., Felton G., Pate R.R. Measuring enjoyment of physical activity in adolescent girls. Am. J. Prev. Med. 2001;21:110–117. doi: 10.1016/S0749-3797(01)00326-9.
    1. Léger L.A., Mercier D., Gadoury C., Lambert J. The multistage 20 m shuttle run test for aerobic fitness. J. Sport Sci. 1988;6:93–101. doi: 10.1080/02640418808729800.
    1. Fairclough S.J., Hackett A.F., Davies I.G., Gobbi R., Mackintosh K.A., Warburton G.L., Stratton G., van Sluijs E.M., Boddy L.M. Promoting healthy weight in primary school children through physical activity and nutrition education: A pragmatic evaluation of the CHANGE! Randomised intervention study. BMC Public Health. 2013 doi: 10.1186/1471-2458-13-626.
    1. Stratton G., Canoy D., Boddy L.M., Taylor S.R., Hackett A.F., Buchan I.E. Cardiorespiratory fitness and body mass index of 9–11-year-old English children: A serial cross-sectional study from 1998 to 2004. Int. J. Obes. 2007;31:1172–1178. doi: 10.1038/sj.ijo.0803562.
    1. Hanggi J.M., Phillips L.R., Rowlands A.V. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J. Sci. Med. Sport. 2013;16:40–44. doi: 10.1016/j.jsams.2012.05.012.
    1. Cain K.L., Sallis J.F., Conway T.L., Van Dyck D., Calhoon L. Using accelerometers in youth physical activity studies: A review of methods. J. Phys. Act. Health. 2013;10:437–450. doi: 10.1123/jpah.10.3.437.
    1. Van Hees V.T., Gorzelniak L., Dean Leon E.C., Eder M., Pias M., Taherian S., Ekelund U., Renstrom F., Franks P.W., Horsch A., et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. 2013;8:e61691. doi: 10.1371/journal.pone.0061691.
    1. Van Hees V.T., Fang Z., Langford J., Assah F., Mohammad A., da Silva I.C.M., Trenell M.I., White T., Wareham N.J., Brage S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. 2014;117:738–744. doi: 10.1152/japplphysiol.00421.2014.
    1. Fairclough S.J., Noonan R., Rowlands A.V., Van Hees V., Knowles Z., Boddy L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016;48:245–253. doi: 10.1249/MSS.0000000000000771.
    1. Rowlands A.V., Cliff D.P., Fairclough S.J., Boddy L.M., Olds T.S., Parfitt G., Noonan R.J., Downs S.J., Knowles Z.R., Beets M.W. Moving Forward with Backward Compatibility: Translating Wrist Accelerometer Data. Med. Sci. Sports Exerc. 2016;48:2142–2149. doi: 10.1249/MSS.0000000000001015.
    1. Noonan R.J., Boddy L.M., Kim Y., Knowles Z.R., Fairclough S.J. Comparison of children′s free-living physical activity derived from wrist and hip raw accelerations during the segmented week. J. Sport Sci. 2016 doi: 10.1080/02640414.2016.1255347.
    1. Sabia S., van Hees V.T., Shipley M.J., Trenell M.I., Hagger-Johnson G., Elbaz A., Kivimaki M., Singh-Manoux A. Association Between Questionnaire- and Accelerometer-Assessed Physical Activity: The Role of Sociodemographic Factors. Am. J. Epidemiol. 2014;179:781–790. doi: 10.1093/aje/kwt330.
    1. Rich C., Geraci M., Griffiths L., Sera F., Dezateux C., Cortina-Borja M. Quality Control Methods in Accelerometer Data Processing: Defining Minimum Wear Time. PLoS ONE. 2013;8:e67206. doi: 10.1371/journal.pone.0067206.
    1. Hildebrand M., Van Hees V.T., Hansen B.H., Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014;46:1816–1824. doi: 10.1249/MSS.0000000000000289.
    1. Saint-Maurice P., Kim Y., Welk G., Gaesser G. Kids are not little adults: What MET threshold captures sedentary behavior in children? Eur. J. Appl. Physiol. 2016;116:29–38. doi: 10.1007/s00421-015-3238-1.
    1. Van Hees V.T., Sabia S., Anderson K.N., Denton S.J., Oliver J., Catt M., Abell J.G., Kivimäki M., Trenell M., Singh-Manoux A. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLoS ONE. 2015;10:e0142533. doi: 10.1371/journal.pone.0142533.
    1. Lounsbery M.A.F., McKenzie T.L., Morrow J.J.R., Holt K.A., Budnar R.G. School physical activity policy assessment. J. Phys. Act. Health. 2013;10:496–503. doi: 10.1123/jpah.10.4.496.
    1. Brener N.D., Pejavara A., Barrios L.C., Crossett L., Lee S.M., McKenna M., Michael S., Wechsler H. Applying the School Health Index to a Nationally Representative Sample of Schools. J. Sch. Health. 2006;76:57–66. doi: 10.1111/j.1746-1561.2006.00069.x.
    1. Fairclough S.J., Ridgers N.D., Welk G. Correlates of children′s moderate and vigorous physical activity during weekdays and weekends. J. Phys. Act. Health. 2012;9:129–137. doi: 10.1123/jpah.9.1.129.
    1. Fairclough S.J., Beighle A., Erwin H., Ridgers N.D. School day segmented physical activity patterns of high and low active children. BMC Public Health. 2012 doi: 10.1186/1471-2458-12-406.
    1. Rasbash J., Charlton C., Browne W.J., Healy M., Cameron B. MLwiN Version 2.02. Centre for Multilevel Modelling, University of Bristol; Bristol, UK: 2005.
    1. Twisk J.W.R. Practical Guides to Biostatistics and Epidemiology: Applied Multilevel Analysis. Cambridge University Press; Cambridge, UK: 2006.
    1. Fairclough S.J., Ridgers N.D. Relationships between maturity status, physical activity, and physical self-perceptions in primary school children. J. Sport Sci. 2010;28:1–9. doi: 10.1080/02640410903334780.
    1. Bacil E.D., Mazzardo Junior O., Rech C.R., Legnani R.F., de Campos W. Physical activity and biological maturation: A systematic review. Rev. Paul. Pediatr. 2015;33:114–121. doi: 10.1016/j.rpped.2014.11.003.
    1. Sherar L.B., Cumming S.P., Eisenmann J.C., Baxter-Jones A.D.G., Malina R.M. Adolescent biological maturity and physical activity: Biology meets behavior. Pediatr. Exerc. Sci. 2010;22:332–349. doi: 10.1123/pes.22.3.332.
    1. Cumming S.P., Sherar L.B., Esliger D.W., Riddoch C.J., Malina R.M. Concurrent and prospective associations among biological maturation, and physical activity at 11 and 13 years of age. Scand. J. Med. Sci. Sports. 2014;24:e20–e28. doi: 10.1111/sms.12103.
    1. Roberts S.J., Fairclough S.J., Ridgers N.D., Porteous C. An observational assessment of physical activity levels and social behaviour during elementary school recess. Health Educ. J. 2012;72:254–262. doi: 10.1177/0017896912439126.
    1. Marshall S.J., Biddle S.J.H., Sallis J.F., McKenzie T.L., Conway T.L. Clustering of Sedentary Behaviors and Physical Activity among Youth: A Cross-National Study. Pediatr. Exerc. Sci. 2002;14:401–417. doi: 10.1097/00005768-200205001-01827.
    1. Van Grieken A., Ezendam N.P., Paulis W.D., van der Wouden J.C., Raat H. Primary prevention of overweight in children and adolescents: A meta-analysis of the effectiveness of interventions aiming to decrease sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2012 doi: 10.1186/1479-5868-9-61.
    1. Make a Difference at Your School! [(accessed on 29 March 2017)]; Available online: .
    1. Dale D., Corbin C.B., Dale K.S. Restricting opportunities to be active during school time: Do children compensate by increasing physical activity levels after school? Res. Q. Exerc. Sport. 2000;71:240–248. doi: 10.1080/02701367.2000.10608904.
    1. Salmon J., Brown H., Hume C. Effects of strategies to promote children’s physical activity on potential mediators. Int. J. Obes. 2009;33:S66–S73. doi: 10.1038/ijo.2009.21.
    1. Lubans D.R., Lonsdale C., Cohen K., Eather N., Beauchamp M.R., Morgan P.J., Sylvester B.D., Smith J.J. Framework for the design and delivery of organized physical activity sessions for children and adolescents: Rationale and description of the ‘SAAFE’ teaching principles. Int. J. Behav. Nutr. Phys. Act. 2017 doi: 10.1186/s12966-017-0479-x.
    1. The PE and Sport Premium: An Investigation in Primary Schools. [(accessed on 29 March 2017)]; Available online: .
    1. Lee S.M., Burgeson C.R., Fulton J.E., Spain C.G. Physical education and physical activity: Results from the School Health Policies and Programs Study 2006. J. Sch. Health. 2007;77:435–463. doi: 10.1111/j.1746-1561.2007.00229.x.
    1. Ridgers N.D., Fairclough S.J., Stratton G. Variables associated with children’s physical activity levels during recess: The A-CLASS project. Int. J. Behav. Nutr. Phys. Act. 2010 doi: 10.1186/1479-5868-7-74.
    1. Taylor R.W., Farmer V.L., Cameron S.L., Meredith-Jones K., Williams S.M., Mann J.I. School playgrounds and physical activity policies as predictors of school and home time activity. Int. J. Behav. Nutr. Phys. Act. 2011 doi: 10.1186/1479-5868-8-38.
    1. Fitzgerald A., Fitzgerald N., Aherne C. Do peers matter? A review of peer and/or friends’ influence on physical activity among American adolescents. J. Adolesc. 2012;35:941–958. doi: 10.1016/j.adolescence.2012.01.002.
    1. Ridgers N.D., Salmon J., Parrish A.M., Stanley R.M., Okely A.D. Physical activity during school recess: A systematic review. Am. J. Prev. Med. 2012;43:320–328. doi: 10.1016/j.amepre.2012.05.019.
    1. Ridgers N.D., Stratton G., McKenzie T.L. Reliability and validity of the System for Observing Children’s Activity and Relationships during Play (SOCARP) J. Phys. Act. Health. 2010;7:17–25. doi: 10.1123/jpah.7.1.17.
    1. Freedson P., Bowles H.R., Troiano R., Haskell W. Assessment of physical activity using wearable monitors: Recommendations for monitor calibration and use in the field. Med. Sci. Sports Exerc. 2012;44:S1–S4. doi: 10.1249/MSS.0b013e3182399b7e.
    1. Peach D., Van Hoomissen J., Callender H.L. Exploring the ActiLife® filtration algorithm: Converting raw acceleration data to counts. Physiol. Meas. 2014;35:2359–2367. doi: 10.1088/0967-3334/35/12/2359.

Source: PubMed

3
Suscribir