Inositols and metabolic disorders: From farm to bedside

M Caputo, E Bona, I Leone, M T Samà, A Nuzzo, A Ferrero, G Aimaretti, P Marzullo, F Prodam, M Caputo, E Bona, I Leone, M T Samà, A Nuzzo, A Ferrero, G Aimaretti, P Marzullo, F Prodam

Abstract

Inositol and its derivates are catching interest in metabolism since taking part in several physiological processes, including endocrine modulation. Through several mechanisms mostly mediated by insulin signaling, these compounds regulate the activities of several hormones and are essential in oocytes maturation. It is interesting to point out the contribution of an inositol deficiency in the development of several diseases, mainly in the metabolic and endocrine setting. Inositols derive from both diet and endogenous production; among causes of inositol deficiency reduced dietary intake, increased catabolism and/or excretion, decreased biosynthesis, inhibition of gut and cellular uptake and altered microbiota could be considered. Mounting direct and indirect evidence suggests that the two main isoforms (Myo-inositol-inositol, D-chiro-inositol) are implied in glycemic and lipidic metabolism and supplementation yield a beneficial effect on these parameters without hazards for health. Moreover, they have a role in polycystic ovary syndrome, acting as insulin-sensitizing agents and free radical scavengers, helping to regulate metabolism and promoting ovulation. The aim of this narrative review is to discuss the role of inositols in metabolic function disorders paying attention to whether these compounds could be efficacious and safe as a therapeutic agent with a focus on dietary intake and the role of gut microbiota.

Keywords: Diet; Food supplement; Inositol; Lipids; Metabolism; Microbiota; Ovary; Type 2 diabetes.

Conflict of interest statement

The Authors declare that there is no financial/personal interest or belief that could affect their objectivity.

© 2020 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC.

Figures

Graphical abstract
Graphical abstract

References

    1. Bizzarri M., Fuso A., Dinicola S., Cucina A., Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expet Opin Drug Metabol Toxicol. 2016;12(10):1181–1196.
    1. Siddiqui N., Singh V., Deshmukh M.M., Gurunath R. Structures, stability and hydrogen bonding in inositol conformers. Phys Chem Chem Phys. 2015;17(28):18514–18523.
    1. Bizzarri M., Carlomagno G. Inositol: history of an effective therapy for polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2014;18:1896–1903.
    1. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? 2010; Nutr Res Rev. 23(1):65-134.
    1. Croze M.L., Soulage C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013;95(10):1811–1827.
    1. Holub B.J. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563–597.
    1. Hasegawa R., Eisenberg F., Jr. Selective hormonal control of myo-inositol biosynthesis in reproductive organs and liver of the male rat. Proc Natl Acad Sci U S A. 1981;78(8):4863–4866.
    1. Pitkänen E. Changes in serum and urinary myo-inositol levels in chronic glomerulonephritis. Clin Chim Acta. 1976;71(3):461–468.
    1. Bourgeois F., Coady M.J., Lapointe J.Y. Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT. J Physiol. 2005;563(pt2):333–343.
    1. Schneider S. Inositol transport proteins. FEBS Lett. 2015;589(10):1049–1058.
    1. Thomas R.M., Nechamen C.A., Mazurkiewicz J.E., Ulloa-Aguirre A., Dias J.A. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization. Endocrinology. 2011;152:1691–1701.
    1. Chiu T.T., Rogers M.S., Briton-Jones C., Haines C. Effects of myo-inositol on the invitro maturation and subsequent development of mouse oocytes. Hum Reprod. 2003;18:408–416.
    1. Streb H., Irvine R.F., Berridge M.J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983;306(5938):67–69. Nov 3-9.
    1. Loewus M.W., Loewus F.A., Brillinger G.U., Otsuka H., Floss H.G. Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J Biol Chem. 1980;255(24):11710–11712.
    1. Dinicola S., Minini M., Unfer V., Verna R., Cucina A., Bizzarri M. Nutritional and acquired deficiencies in inositol bioavailability. Correlations with metabolic disorders. Int J Mol Sci. 2017;18(10) Pii:E2187.
    1. Clements R.S., Jr., Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr. 1980;33(9):1954–1967.
    1. Reddy N.R., Sathe S.K., Salunke D.K. Phytates in legumes and cereals. Adv Food Res. 1982;28:1–89.
    1. Schlemmer U., Frølich R.M., Prieto R.M., Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res. 2009;53(Suppl. 2):S330–S375.
    1. Schlemmer U., Jany K.D., Berk A., Schulz E., Rechkemmer G. Degradation of phytate in the gut of pigs-pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Arch Tierernahr. 2001;55(4):255–280.
    1. Pineda-Quiroga C., Borda-Molina D., Chaves-Moreno D., Ruiz Atxaerandio R., Camarinha-Silva A., García-Rodríguez A. Microbial and functional profile of the ceca from laying hens affected by feeding prebiotics, probiotics, and synbiotics. Microorganisms. 2019;7(5):E123. pii.
    1. Okazaki Y., Katayama T. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet. Nutr Res. 2014;34(12):1085–1091.
    1. Sekita A., Okazaki Y., Katayama T. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet. Nutrition. 2016;32(6):720–722.
    1. Okazaki Y., Sekita A., Katayama T. Intake of phytic acid and myo-inositol lowers hepatic lipogenic gene expression and modulates gut microbiota in rats fed a high-sucrose diet. Biomed Rep. 2018;8(5):466–474.
    1. Zeevi D., Korem T., Godneva A. Structural variation in the gut microbiome associates with host health. Nature. 2019;568(7750):43–48.
    1. Bevilacqua A., Bizzarri M. Inositols in insulin signaling and glucose metabolism. Internet J Endocrinol. 2018;2018
    1. Genazzani AD Inositol as putative integrative treatment for PCOS. Reprod Biomed Online. 2016;33(6):770–780.
    1. Larner J., Craig J.W. Urinary myo-inositol-to-chiro-inositol ratios and insulin resistance. Diabetes Care. 1996;19(1):76–78.
    1. Azziz R., Woods K.S., Reyna R., Key T.J., Knochenhauer E.S., Yildiz B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–2749.
    1. Fauser B.C., Tarlatzis B.C., Rebar R.W. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97:28–38.
    1. Dunaif KR Insulin resistance in women with polycystic ovary syndrome. Fertil Steril. 2006;86(1):S13–S14.
    1. Facchinetti F., Bizzarri M., Benvenga S. Results from the international consensus conference on myo-inositol and d-chiro-inositol in obstetrics and gynecology: the link between metabolic syndrome and PCOS. Eur J Obstet Gynecol Reprod Biol. 2015;195:72–76.
    1. Nestler J.E., Unfer V. Reflections on inositol(s) for PCOS therapy: steps toward success. Gynecol Endocrinol. 2015;31(7):501–505.
    1. Baillargeon J.P., Diamanti-Kandarakis E., Ostlund R.E., Jr., Apridonidze T., Iuorno M.J., Nestler J.E. Altered D-chiro- inositol urinary clearance in women with polycystic ovary syndrome. Diabetes Care. 2006;29(2):300–305.
    1. Baillargeon J.P., Nestler J.E., Ostlund R.E., Apridonidze T., Diamanti-Kandarakis E. Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism. Hum Reprod. 2008;23(6):1439–1446.
    1. Baillargeon J.P., Iuorno M.J., Apridonidze T., Nestler J.E. Uncoupling between insulin and release of a d-chiro-inositol- containing inositolphosphoglycan mediator of insulin action in obese women with polycystic ovary syndrome. Metab Syndr Relat Disord. 2010;8(2):127–136.
    1. Cheang K.I., Baillargeon J.P., Essah P.A. Insulin- stimulated release of d-chiro-inositol-containing inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism. 2008;57(10):1390–1397.
    1. Nestler J.E., Jakubowicz D.J., Reamer P., Gunn R.D., Allan G. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med. 1999;340(17):1314–1320.
    1. Iuorno M.J., Jakubowicz D.J., Baillargeon J.P. Effects of D-chiro-inositol in lean women with the poly- cystic ovary syndrome. Endocr Pract. 2002;8:417–423.
    1. Pizzo A., Laganà A.S., Barbaro L. Comparison between effects of myo-inositol and D-chiro-inositol on ovarian function and metabolic factors in women with PCOS. Gynecol Endocrinol. 2014;30(3):205–208.
    1. Minozzi M., Nordio M., Pajalich R. The combined therapy myo-inositol plus D-chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol. 2013;17:537–540.
    1. Benelli E., Del Ghianda S., Di Cosmo C., Tonacchera M. A combined therapy with myo-inositol and D-chiro-inositol improves endocrine parameters and insulin resistance in PCOS young overweight women. Internet J Endocrinol. 2016;2016
    1. Genazzani A.D., Lanzoni C., Ricchieri F., Jasonni V.M. Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in over- weight patients with polycystic ovary syndrome. Gynecol Endocrinol. 2008;24:139–144.
    1. Artini P.G., Di Berardino O.M., Papini F. Endocrine and clinical effects of myo-inositol administration in polycystic ovary syndrome. A randomized study. Gynecol Endocrinol. 2013;29:375–379.
    1. Minozzi M., Costantino D., Guaraldi C., Unfer V. The effect of a combination therapy with myo-inositol and a combined oral contraceptive pill versus a combined oral contraceptive pill alone on metabolic, endocrine, and clinical parameters in polycystic ovary syndrome. Gynecol Endocrinol. 2011;27:920–924.
    1. Nordio M., Proietti E. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo -inositol supplementation alone. Eur Rev Med Pharmacol Sci. 2012;16(5):575–581.
    1. Venturella R., Mocciaro R., De Trana E., D’Alessandro P., Morelli M., Zullo F. Assesment of the modification of the clinical, endocrinal and metabolical profile of patients with PCOS syndrome treated with Myo-inositol. Minerva Ginecol. 2010;64:239–243.
    1. Gerli S., Mignosa M., Di Renzo G.C. Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double-blind placebo-controlled trial. Eur Rev Med Pharmacol Sci. 2003;7:151–159.
    1. Gerli S., Papaleo E., Ferrari A., Di Renzo G.C. Randomized, double blind placebo- controlled trial: effects of myo -inositol on ovarian function and metabolic factors in women with PCOS. Eur Rev Med Pharmacol Sci. 2007;11:347–354.
    1. Le Donne M., Metro D., Alibrandi A., Papa M., Benvenga S. Effects of three treatment modalities (diet, myo-inositol or myo-inositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(5):2293–2301.
    1. Genazzani A.D., Prati A., Marchini F., Petrillo T., Napolitano A., Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecol Endocrinol. 2019;35(12):1088–1093.
    1. Genazzani A.D., Prati A., Simoncini T., Napolitano A. Modulatory role of D-chiro-inositol and alpha lipoic acid combination on hormonal and metabolic parameters of overweight/obese PCOS patients. Eur Gynecol obstetr. 2019;1(1):29–33.
    1. Gomes M.B., Negrato C.A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndrome. 2014;6(1):80.
    1. Jamilian M., Farhat P., Foroozanfard F. Comparison of myo -inositol and metformin on clinical, metabolic and genetic parameters in polycystic ovary syndrome: a randomized controlled clinical trial. Clin Endocrinol. 2017;87:194–200.
    1. Genazzani A.D., Santagni S., Rattighieri E. Modulatory role of D-chiro-inositol (DCI) on LH and insulin secretion in obese PCOS patients. Gynecol Endocrinol. 2014;30(6):438–443.
    1. La Marca A., Grisendi V., Dondi G., Sighinolfi G., Cianci A. The menstrual cycle regularization following D-chiro-inositol treatment in PCOS women: a retrospective study. Gynecol Endocrinol. 2015;31(1):52–56.
    1. Januszewski M., Issat T., Jakimiuk A.A., Santor-Zaczynska M., Jakimiuk A.J. Metabolic and hormonal effects of a combined Myo-inositol and d-chiro-inositol therapy on patients with polycystic ovary syndrome (PCOS) Ginekol Pol. 2019;90(1):7–10.
    1. Raffone E., Rizzo P., Benedetto V. Insulin sensitiser agents alone and in co-treatment with r-FSH for ovulation induction in PCOS women. Gynecol Endocrinol. 2010;26:275–280.
    1. Papaleo E., Unfer V., Baillargeon J.P., Fusi F., Occhi F., De Santis L. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009;91:1750–1754.
    1. Regidor P.A., Schindler A.E. Myo-inositol as a safe and alternative approach in the treatment of infertile PCOS women: a German observational study. Internet J Endocrinol. 2016;2016
    1. Thakkar J.K., Raju M.S., Kennington A.S., Foil B., Caro J.F. [3H] Myo-inositol incorporation into phospholipids in liver microsomes from humans with and without type II diabetes. The lack of synthesis of glycosylphosphatidylinositol, precursor of the insulin mediator inositol phosphate glycan. J Biol Chem. 1990;265(10):5475–5481.
    1. Nayak B., Xie P., Akagi S. Modulation of renal-specific oxidoreductase/myo-inositol oxygenase by high-glucose ambience. Proc Natl Acad Sci U S A. 2005;102(50):17952–17957.
    1. Nayak B., Kondeti V.K., Xie P. Transcriptional and post-translational modulation of myo-inositol oxygenase by high glucose and related pathobiological stresses. J Biol Chem. 2011;286(31):27594–27611.
    1. Sharma I., Tupe R.S., Wallner A.K., Kanwar Y.S. Contribution of myo-inositol oxygenase in AGE: RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Ren Physiol. 2018;314(1):F107–F121.
    1. Jung T.S., Hahm J.R., Kim J.J. Determination of urinary Myo-inositol-/chiro-inositol ratios from Korean diabetes patients. Yonsei Med J. 2005;46(4):532–538.
    1. Asplin I., Galasko G., Larner J. chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc Natl Acad Sci U S A. 1993;90(13):5924–5928.
    1. Sun T.H., Heimark D.B., Nguygen T., Nadler J.L., Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293(3):1092–1098.
    1. Martínez-González M.A., De La Fuente-Arrillaga C., Nunez-Cordoba J.M. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ. 2008;336(7657):1348–1351.
    1. Chukwuma C.I., Ibrahim M.A., Islam M.S. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study. J Physiol Biochem. 2016;72(4) 791-80.
    1. Jeon Y., Aja S., Ronnett G.V., Kim E.K. D-chiro-inositol glycan reduces food intake by regulating hypothalamic neuropeptide expression via AKT-FoxO1 pathway. Biochem Biophys Res Commun. 2016;470(4):818–823.
    1. Pintaudi B., Di Vieste G., Bonomo M. The effectiveness of myo-inositol and D-chiro inositol treatment in type 2 diabetes. Internet J Endocrinol. 2016
    1. Miñambres I., Cuixart G., Gonçalves A., Corcoy R. Effects of inositol on glucose homeostasis: systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2019;38(3):1146–1152.
    1. Santamaria A., Alibrandi A., Di Benedetto A. Clinical and metabolic outcomes in pregnant women at risk forgestational diabetes mellitus supplemented with myo-inositol: a secondary analysis from 3 RCTs. Am J Obstet Gynecol. 2018;219(3):300.e1–300.e6.
    1. Tabrizi R., Ostadmohammadi V., Lankarani K.B. The effects of inositol supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2018;17:123.
    1. Capasso I., Esposito E., Maurea N. Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo controller trial. Trials. 2013;14:273.
    1. Pundir J., Psaroudakis D., Savnur P. Inositol treatment of anovulation in women with polycystic ovary syndrome: a meta-analysis of randomized trials. BJOG. 2018;125:509–510.
    1. Giordano D., Corrado F., Santamaria A. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011;18:102–104.
    1. Kim J.I., Kim J.C., Kang M.J., Lee M.S., Kim J.J., Cha I.J. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur J Clin Nutr. 2005;59(3):456–458.
    1. Shokrpour M., Foroozanfard F., Ebrahimi F. Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecol Endocrinol. 2019;35:406–411.
    1. Unfer V., Carlomagno G., Dante G., Facchinetti F. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28:509–515.
    1. Mukai T., Kishi T., Matsuda Y., Iwata N. A meta-analysis of inositol for depression and anxiety disorders. Hum Psychopharmacol. 2014;29:55–63.
    1. Michell R.H. Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr. 2018:1–16.

Source: PubMed

3
Suscribir