Circulating Monocyte Chemoattractant Protein-1 in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction Treated with Mild Hypothermia: A Biomarker Substudy of SHOCK-COOL Trial

Wenke Cheng, Georg Fuernau, Steffen Desch, Anne Freund, Hans-Josef Feistritzer, Janine Pöss, Petra Buettner, Holger Thiele, Wenke Cheng, Georg Fuernau, Steffen Desch, Anne Freund, Hans-Josef Feistritzer, Janine Pöss, Petra Buettner, Holger Thiele

Abstract

Background: There is evidence that monocyte chemoattractant protein-1 (MCP-1) levels reflect the intensity of the inflammatory response in patients with cardiogenic shock (CS) complicating acute myocardial infarction (AMI) and have a predictive value for clinical outcomes. However, little is known about the effect of mild therapeutic hypothermia (MTH) on the inflammatory response in patients with CS complicating AMI. Therefore, we conducted a biomarker study to investigate the effect of MTH on MCP-1 levels in patients with CS complicating AMI.

Methods: In the randomized mild hypothermia in cardiogenic shock (SHOCK-COOL) trial, 40 patients with CS complicating AMI were enrolled and assigned to MTH (33 °C) for 24 h or normothermia at a 1:1 ratio. Blood samples were collected at predefined time points at the day of admission/day 1, day 2 and day 3. Differences in MCP-1 levels between and within the MTH and normothermia groups were assessed. Additionally, the association of MCP-1 levels with the risk of all-cause mortality at 30 days was analyzed. Missing data were accounted for by multiple imputation as sensitivity analyses.

Results: There were differences in MCP-1 levels over time between patients in MTH and normothermia groups (P for interaction = 0.013). MCP-1 levels on day 3 were higher than on day 1 in the MTH group (day 1 vs day 3: 21.2 [interquartile range, 0.25-79.9] vs. 125.7 [interquartile range, 87.3-165.4] pg/mL; p = 0.006) and higher than in the normothermia group at day 3 (MTH 125.7 [interquartile range, 87.3-165.4] vs. normothermia 12.3 [interquartile range, 0-63.9] pg/mL; p = 0.011). Irrespective of therapy, patients with higher levels of MCP-1 at hospitalization tended to have a decreased risk of all-cause mortality at 30 days (HR, 2.61; 95% CI 0.997-6.83; p = 0.051).

Conclusions: The cooling phase of MTH had no significant effect on MCP-1 levels in patients with CS complicating AMI compared to normothermic control, whereas MCP-1 levels significantly increased after rewarming.

Trial registration: NCT01890317.

Keywords: acute myocardial infarction; cardiogenic shock; mild therapeutic hypothermia; monocyte chemoattractant protein-1.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Study flow. SHOCK-COOL, the randomized trial of mild hypothermia for cardiogenic shock. MTH, mild therapeutic hypothermia.
Figure 2
Figure 2
MCP-1 levels of patients in cardiogenic shock after acute myocardial infarction treated by either mild therapeutic hypothermia (MTH) or normothermia 1, 2 and 3 days following hospitalization. Box and whisker plots show median and interquartile range.
Figure 3
Figure 3
Kaplan–Meier analysis for time to death within the first 30 days in cardiogenic shock complicating acute myocardial infarction patients with MCP-1 levels median (black dashed line) on day 1.

References

    1. Thiele H., Ohman E.M., Waha-Thiele S de Zeymer U., Desch S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019;40:2671–2683. doi: 10.1093/eurheartj/ehz363.
    1. Samsky M.D., Morrow D.A., Proudfoot A.G., Hochman J.S., Thiele H., Rao S.V. Cardiogenic shock after acute myocardial infarction: A review. JAMA. 2021;326:1840–1850. doi: 10.1001/jama.2021.18323.
    1. Kolte D., Khera S., Aronow W.S., Mujib M., Palaniswamy C., Sule S., Jain D., Gotsis W., Ahmed A., Frishman W.H., et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J. Am. Heart Assoc. 2014;3:e000590. doi: 10.1161/JAHA.113.000590.
    1. Nahrendorf M., Pittet M.J., Swirski F.K. Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–2445. doi: 10.1161/CIRCULATIONAHA.109.916346.
    1. Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–166. doi: 10.1126/science.1230719.
    1. Fuernau G., Beck J., Desch S., Eitel I., Jung C., Erbs S., Mangner N., Lurz P., Fengler K., Jobs A., et al. Mild hypothermia in cardiogenic shock complicating myocardial infarction. Circulation. 2019;139:448–457. doi: 10.1161/CIRCULATIONAHA.117.032722.
    1. Shi J., Dai W., Kloner R.A. Therapeutic hypothermia reduces the inflammatory response following ischemia/reperfusion injury in rat hearts. Ther. Hypoth. Temp. Manag. 2017;7:162–170. doi: 10.1089/ther.2016.0042.
    1. Meybohm P., Gruenewald M., Albrecht M., Zacharowski K.D., Lucius R., Zitta K., Koch A., Tran N., Scholz J., Bein B. Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling. PLoS ONE. 2009;4:e7588. doi: 10.1371/journal.pone.0007588.
    1. Diestel A., Roessler J., Berger F., Schmitt K.R.L. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells. Cryobiology. 2008;57:216–222. doi: 10.1016/j.cryobiol.2008.08.005.
    1. Shao Z.-H., Chang W.-T., Chan K.C., Wojcik K.R., Hsu C.-W., Li C.-Q., Li J., Anderson T., Qin Y., Becker L.B., et al. Hypothermia-induced cardioprotection using extended ischemia and early reperfusion cooling. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H1995–H2003. doi: 10.1152/ajpheart.01312.2005.
    1. van der Pals J., Götberg M.I., Götberg M., Hultén L.M., Magnusson M., Jern S., Erlinge D. Hypothermia in cardiogenic shock reduces systemic t-PA release. J. Thromb. Thrombolysis. 2011;32:72–81. doi: 10.1007/s11239-010-0541-x.
    1. Neri M., Fineschi V., Di Paolo M., Pomara C., Riezzo I., Turillazzi E., Cerretani D. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr. Vasc. Pharmacol. 2015;13:26–36. doi: 10.2174/15701611113119990003.
    1. Xia Y., Frangogiannis N.G. MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy. Inflamm. Allergy Drug Targets. 2007;6:101–107.
    1. Zhou L., Azfer A., Niu J., Graham S., Choudhury M., Adamski F.M., Younce C., Binkley P.F., Kolattukudy P.E. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ. Res. 2006;98:1177–1185. doi: 10.1161/01.RES.0000220106.64661.71.
    1. Lemos JA de Morrow D.A., Blazing M.A., Jarolim P., Wiviott S.D., Sabatine M.S., Califf R.M., Braunwald E. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: Results from the A to Z trial. J. Am. Coll. Cardiol. 2007;50:2117–2124. doi: 10.1016/j.jacc.2007.06.057.
    1. Frangogiannis N.G. The prognostic value of monocyte chemoattractant protein-1/CCL2 in acute coronary syndromes. J. Am. Coll. Cardiol. 2007;50:2125–2127. doi: 10.1016/j.jacc.2007.08.027.
    1. Prondzinsky R., Unverzagt S., Lemm H., Wegener N., Heinroth K., Buerke U., Fiedler M., Thiery J., Haerting J., Werdan K., et al. Acute myocardial infarction and cardiogenic shock: Prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Med. Klin. Intensivmed. Notfmed. 2012;107:476–484. doi: 10.1007/s00063-012-0117-y.
    1. Turillazzi E., Di Paolo M., Neri M., Riezzo I., Fineschi V. A theoretical timeline for myocardial infarction: Immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J. Transl. Med. 2014;12:188. doi: 10.1186/1479-5876-12-188.
    1. Zhang W., Zhu T., Chen L., Luo W., Chao J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am. J. Physiol. Heart Circ. Physiol. 2020;318:H59–H71. doi: 10.1152/ajpheart.00308.2019.
    1. Salim A., Mackinnon A., Christensen H., Griffiths K. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Psychiatry Res. 2008;160:335–345. doi: 10.1016/j.psychres.2007.08.005.
    1. Peugh J.L., Enders C.K. Using the SPSS mixed procedure to fit cross-sectional and longitudinal multilevel models. Educ. Psychol. Meas. 2005;65:717–741. doi: 10.1177/0013164405278558.
    1. Park S.-Y., Freedman N.D., Haiman C.A., Le Marchand L., Wilkens L.R., Setiawan V.W. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann. Intern. Med. 2017;167:228–235. doi: 10.7326/M16-2472.
    1. Beurskens C.J., Horn J., de Boer Anita MTuip Schultz M.J., van Leeuwen E.M., Vroom M.B., Juffermans N.P. Cardiac arrest patients have an impaired immune response, which is not influenced by induced hypothermia. Crit. Care. 2014;18:R162. doi: 10.1186/cc14002.
    1. Bisschops L.L.A., Hoedemaekers C.W.E., Mollnes T.E., van der Hoeven Johannes G. Rewarming after hypothermia after cardiac arrest shifts the inflammatory balance. Crit. Care Med. 2012;40:1136–1142. doi: 10.1097/CCM.0b013e3182377050.
    1. Hildebrand F., van Griensven M., Giannoudis P., Luerig A., Harwood P., Harms O., Fehr M., Krettek C., Pape H.-C. Effects of hypothermia and re-warming on the inflammatory response in a murine multiple hit model of trauma. Cytokine. 2005;31:382–393. doi: 10.1016/j.cyto.2005.06.008.
    1. Vaagenes P., Gundersen Y., Opstad P.K. Rapid rewarming after mild hypothermia accentuates the inflammatory response after acute volume controlled haemorrhage in spontaneously breathing rats. Resuscitation. 2003;58:103–112. doi: 10.1016/S0300-9572(03)00102-3.
    1. Inoue K., Suzuki S., Kubo H., Ishida I., Ueda S., Kondo T. Effects of rewarming on nuclear factor-kappaB and interleukin 8 expression in cold-preserved alveolar epithelial cells. Transplantation. 2003;76:409–415. doi: 10.1097/01.TP.0000076095.51697.5E.
    1. Bisschops L.L.A., van der Hoeven Johannes G., Mollnes T.E., Hoedemaekers C.W.E. Seventy-two hours of mild hypothermia after cardiac arrest is associated with a lowered inflammatory response during rewarming in a prospective observational study. Crit. Care. 2014;18:546. doi: 10.1186/s13054-014-0546-5.
    1. Fuernau G., Poenisch C., Eitel I., Denks D., de Waha S., Pöss J., Heine G.H., Desch S., Schuler G., Adams V., et al. Prognostic impact of established and novel renal function biomarkers in myocardial infarction with cardiogenic shock: A biomarker substudy of the IABP-SHOCK II-trial. Int. J. Cardiol. 2015;191:159–166. doi: 10.1016/j.ijcard.2015.04.242.
    1. Fuernau G., Poenisch C., Eitel I., de Waha S., Desch S., Schuler G., Adams V., Werdan K., Zeymer U., Thiele H. Growth-differentiation factor 15 and osteoprotegerin in acute myocardial infarction complicated by cardiogenic shock: A biomarker substudy of the IABP-SHOCK II-trial. Eur. J. Heart Fail. 2014;16:880–887. doi: 10.1002/ejhf.117.
    1. Fuernau G., Pöss J., Denks D., Desch S., Heine G.H., Eitel I., Seiler S., de Waha S., Ewen S., Link A., et al. Fibroblast growth factor 23 in acute myocardial infarction complicated by cardiogenic shock: A biomarker substudy of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Crit. Care. 2014;18:713. doi: 10.1186/s13054-014-0713-8.
    1. Jung C., Fuernau G., Eitel I., Desch S., Schuler G., Kelm M., Adams V., Thiele H. Incidence, laboratory detection and prognostic relevance of hypoxic hepatitis in cardiogenic shock. Clin. Res. Cardiol. 2017;106:341–349. doi: 10.1007/s00392-016-1060-3.
    1. Deo R., Khera A., McGuire D.K., Murphy S.A., de P. Meo Neto, J.; Morrow, D.A.; de Lemos, J.A. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J. Am. Coll. Cardiol. 2004;44:1812–1818. doi: 10.1016/j.jacc.2004.07.047.
    1. de Lemos J.A., Morrow D.A., Sabatine M.S., Murphy S.A., Gibson C.M., Antman E.M., McCabe C.H., Cannon C.P., Braunwald E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation. 2003;107:690–695. doi: 10.1161/01.CIR.0000049742.68848.99.
    1. Niu J., Kolattukudy P.E. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clin. Sci. 2009;117:95–109. doi: 10.1042/CS20080581.
    1. Liu J., Wang H., Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: A double-edged sword. Clin. Med. Insights Cardiol. 2016;10:79–84. doi: 10.4137/CMC.S33164.
    1. Chen B., Frangogiannis N.G. Chemokines in Myocardial Infarction. J. Cardiovasc. Transl. Res. 2021;14:35–52. doi: 10.1007/s12265-020-10006-7.
    1. Wilson E.M., Diwan A., Spinale F.G., Mann D.L. Duality of innate stress responses in cardiac injury, repair, and remodeling. J. Mol. Cell. Cardiol. 2004;37:801–811. doi: 10.1016/j.yjmcc.2004.05.028.
    1. Martire A., Fernandez B., Buehler A., Strohm C., Schaper J., Zimmermann R., Kolattukudy P.E., Schaper W. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice mimics ischemic preconditioning through SAPK/JNK1/2 activation. Cardiovasc. Res. 2003;57:523–534. doi: 10.1016/S0008-6363(02)00697-1.
    1. Morimoto H., Hirose M., Takahashi M., Kawaguchi M., Ise H., Kolattukudy P.E., Yamada M., Ikeda U. MCP-1 induces cardioprotection against ischaemia/reperfusion injury: Role of reactive oxygen species. Cardiovasc. Res. 2008;78:554–562. doi: 10.1093/cvr/cvn035.
    1. Tarzami S.T., Cheng R., Miao W., Kitsis R.N., Berman J.W. Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death. J. Mol. Cell. Cardiol. 2002;34:209–221. doi: 10.1006/jmcc.2001.1503.
    1. Tarzami S.T., Calderon T.M., Deguzman A., Lopez L., Kitsis R.N., Berman J.W. MCP-1/CCL2 protects cardiac myocytes from hypoxia-induced apoptosis by a G(alphai)-independent pathway. Biochem. Biophys. Res. Commun. 2005;335:1008–1016. doi: 10.1016/j.bbrc.2005.07.168.
    1. Aiello R.J., Bourassa P.A., Lindsey S., Weng W., Natoli E., Rollins B.J., Milos P.M. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 1999;19:1518–1525. doi: 10.1161/01.ATV.19.6.1518.
    1. Kolattukudy P.E., Quach T., Bergese S., Breckenridge S., Hensley J., Altschuld R., Gordillo G., Klenotic S., Orosz C., Parker-Thornburg J. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle. Am. J. Pathol. 1998;152:101–111.

Source: PubMed

3
Suscribir