Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: a post-hoc analysis of the COMACARE trial

Johanna Laurikkala, Anders Aneman, Alexander Peng, Matti Reinikainen, Paul Pham, Pekka Jakkula, Johanna Hästbacka, Erika Wilkman, Pekka Loisa, Jussi Toppila, Thomas Birkelund, Kaj Blennow, Henrik Zetterberg, Markus B Skrifvars, Johanna Laurikkala, Anders Aneman, Alexander Peng, Matti Reinikainen, Paul Pham, Pekka Jakkula, Johanna Hästbacka, Erika Wilkman, Pekka Loisa, Jussi Toppila, Thomas Birkelund, Kaj Blennow, Henrik Zetterberg, Markus B Skrifvars

Abstract

Background: Impaired cerebrovascular reactivity (CVR) is one feature of post cardiac arrest encephalopathy. We studied the incidence and features of CVR by near infrared spectroscopy (NIRS) and associations with outcome and biomarkers of brain injury.

Methods: A post-hoc analysis of 120 comatose OHCA patients continuously monitored with NIRS and randomised to low- or high-normal oxygen, carbon dioxide and mean arterial blood pressure (MAP) targets for 48 h. The tissue oximetry index (TOx) generated by the moving correlation coefficient between cerebral tissue oxygenation measured by NIRS and MAP was used as a dynamic index of CVR with TOx > 0 indicating impaired reactivity and TOx > 0.3 used to delineate the lower and upper MAP bounds for disrupted CVR. TOx was analysed in the 0-12, 12-24, 24-48 h time-periods and integrated over 0-48 h. The primary outcome was the association between TOx and six-month functional outcome dichotomised by the cerebral performance category (CPC1-2 good vs. 3-5 poor). Secondary outcomes included associations with MAP bounds for CVR and biomarkers of brain injury.

Results: In 108 patients with sufficient data to calculate TOx, 76 patients (70%) had impaired CVR and among these, chronic hypertension was more common (58% vs. 31%, p = 0.002). Integrated TOx for 0-48 h was higher in patients with poor outcome than in patients with good outcome (0.89 95% CI [- 1.17 to 2.94] vs. - 2.71 95% CI [- 4.16 to - 1.26], p = 0.05). Patients with poor outcomes had a decreased upper MAP bound of CVR over time (p = 0.001), including the high-normal oxygen (p = 0.002), carbon dioxide (p = 0.012) and MAP (p = 0.001) groups. The MAP range of maintained CVR was narrower in all time intervals and intervention groups (p < 0.05). NfL concentrations were higher in patients with impaired CVR compared to those with intact CVR (43 IQR [15-650] vs 20 IQR [13-199] pg/ml, p = 0.042).

Conclusion: Impaired CVR over 48 h was more common in patients with chronic hypertension and associated with poor outcome. Decreased upper MAP bound and a narrower MAP range for maintained CVR were associated with poor outcome and more severe brain injury assessed with NfL. Trial registration ClinicalTrials.gov, NCT02698917 .

Keywords: Cerebrovascular reactivity; Hypoxic-ischaemic brain injury; Out-of-hospital cardiac arrest.

Conflict of interest statement

HZ has served at scientific advisory boards for Eisai, Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics, Nervgen, AZTherapies and CogRx, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure and Biogen, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). Markus Skrifvars reports a lecture fee and travel grant from BARD Medical (Ireland). Erika Wilkman reports an external research support agreement (Research-Devices Grant, INVOS) with Medtronic (Covidien Ag).

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of excluded and included study patients
Fig. 2
Fig. 2
Optimal MAP (OptMAP) in three time periods: a 0–12 h, b 12–24 h and c 24–48 h, with good or poor six-month neurologic outcomes
Fig. 3
Fig. 3
ac 48 h neuron-specific enolase (NSE) concentrations (μg/l), df 48 h S100B concentrations (μg/l) and gi 48 h neurofilament (NfL) concentrations (pg/ml) against mean cerebrovascular reactivity (mean TOx) during the time intervals 0–12 h, 12–24 h and 24–48 h. Patients are classified according to good or poor neurologic outcomes. Data is presented with logharitmic X-axes

References

    1. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39(11):1972–1980. doi: 10.1007/s00134-013-3043-4.
    1. Bisschops LL, Hoedemaekers CW, Simons KS, van der Hoeven JG. Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. Crit Care Med. 2010;38(7):1542–1547. doi: 10.1097/CCM.0b013e3181e2cc1e.
    1. van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE. Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int. 2018;2018:4143636.
    1. Pham P, Bindra J, Chuan A, Jaeger M, Aneman A. Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study. Resuscitation. 2015;96:192–198. doi: 10.1016/j.resuscitation.2015.08.007.
    1. Ameloot K, Genbrugge C, Meex I, Jans F, Boer W, Vander Laenen M, Ferdinande B, Mullens W, Dupont M, Dens J, et al. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: Time to drop 'one-size-fits-all' hemodynamic targets? Resuscitation. 2015;90:121–126. doi: 10.1016/j.resuscitation.2015.03.001.
    1. Sekhon MS, Gooderham P, Menon DK, Brasher PMA, Foster D, Cardim D, Czosnyka M, Smielewski P, Gupta AK, Ainslie PN, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med. 2019;47(7):960–969. doi: 10.1097/CCM.0000000000003745.
    1. Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–859. doi: 10.1113/jphysiol.2013.268953.
    1. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129. doi: 10.1186/s13054-016-1293-6.
    1. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10(1):122–128. doi: 10.1007/s12028-008-9140-5.
    1. Diedler J, Zweifel C, Budohoski KP, Kasprowicz M, Sorrentino E, Haubrich C, Brady KM, Czosnyka M, Pickard JD, Smielewski P. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: the role of slow frequency oscillations. Anesth Analg. 2011;113(4):849–857. doi: 10.1213/ANE.0b013e3182285dc0.
    1. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW., Jr Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41(9):1951–1956. doi: 10.1161/STROKEAHA.109.575159.
    1. Zweifel C, Dias C, Smielewski P, Czosnyka M. Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Med Eng Phys. 2014;36(5):638–645. doi: 10.1016/j.medengphy.2014.03.002.
    1. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, White MA, Sha D, Ponce-Mejia L, Brown C, et al. Near-infrared spectroscopy-derived cerebral autoregulation indices independently predict clinical outcome in acutely Ill comatose patients. J Neurosurg Anesthesiol. 2020;32(3):234–241. doi: 10.1097/ANA.0000000000000589.
    1. Zeiler FA, Donnelly J, Calviello L, Smielewski P, Menon DK, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J Neurotrauma. 2017;34(23):3224–3237. doi: 10.1089/neu.2017.5086.
    1. Sekhon MS, Smielewski P, Bhate TD, Brasher PM, Foster D, Menon DK, Gupta AK, Czosnyka M, Henderson WR, Gin K, et al. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: a pilot proof-of-concept study. Resuscitation. 2016;106:120–125. doi: 10.1016/j.resuscitation.2016.05.019.
    1. Jakkula P, Reinikainen M, Hastbacka J, Pettila V, Loisa P, Karlsson S, Laru-Sompa R, Bendel S, Oksanen T, Birkelund T, et al. Targeting low- or high-normal carbon dioxide, oxygen, and mean arterial pressure after cardiac arrest and resuscitation: study protocol for a randomized pilot trial. Trials. 2017;18(1):507. doi: 10.1186/s13063-017-2257-0.
    1. Jakkula P, Pettila V, Skrifvars MB, Hastbacka J, Loisa P, Tiainen M, Wilkman E, Toppila J, Koskue T, Bendel S, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44(12):2091–2101. doi: 10.1007/s00134-018-5446-8.
    1. Jakkula P, Reinikainen M, Hastbacka J, Loisa P, Tiainen M, Pettila V, Toppila J, Lahde M, Backlund M, Okkonen M, et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44(12):2112–2121. doi: 10.1007/s00134-018-5453-9.
    1. Aneman A, Laurikalla J, Pham P, Wilkman E, Jakkula P, Reinikainen M, Toppila J, Skrifvars MB. Cerebrovascular autoregulation following cardiac arrest: protocol for a post hoc analysis of the randomised COMACARE pilot trial. Acta Anaesthesiol Scand. 2019;63(9):1272–1277. doi: 10.1111/aas.13435.
    1. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–2463. doi: 10.1097/CCM.0b013e3182514eb6.
    1. Wihersaari L, Ashton NJ, Reinikainen M, Jakkula P, Pettila V, Hastbacka J, Tiainen M, Loisa P, Friberg H, Cronberg T, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Med. 2021;47(1):39–48. doi: 10.1007/s00134-020-06218-9.
    1. Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett PJ, Becker L, Bossaert L, Delooz HH, Dick WF, Eisenberg MS et al: Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation 1991, 84(2):960–975.
    1. Slessarev M, Mahmoud O, McIntyre CW, Ellis CG: Cerebral blood flow deviations in critically ill patients: potential insult contributing to ischemic and hyperemic injury. Front Med (Lausanne) 2020, 7:615318.
    1. Lazaridis C. Cerebral autoregulation: the concept the legend the promise. Neurocrit Care. 2021;34(3):717–719. doi: 10.1007/s12028-020-01186-w.
    1. Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology. 2017;126(6):1187–1199. doi: 10.1097/ALN.0000000000001625.
    1. Minhas JS, Panerai RB, Swienton D, Robinson TG. Feasibility of improving cerebral autoregulation in acute intracerebral hemorrhage (BREATHE-ICH) study: results from an experimental interventional study. Int J Stroke. 2020;15(6):627–637. doi: 10.1177/1747493019873690.
    1. Koyama Y. Endothelin systems in the brain: involvement in pathophysiological responses of damaged nerve tissues. Biomol Concepts. 2013;4(4):335–347. doi: 10.1515/bmc-2013-0004.
    1. Pesek M, Kibler K, Easley RB, Mytar J, Rhee C, Andropolous D, Brady K. The upper limit of cerebral blood flow autoregulation is decreased with elevations in intracranial pressure. Acta Neurochir Suppl. 2016;122:229–231. doi: 10.1007/978-3-319-22533-3_46.
    1. Koide M, Ferris HR, Nelson MT, Wellman GC: Impaired cerebral autoregulation after subarachnoid hemorrhage: a quantitative assessment using a mouse model. Front Physiol 2021, 12:688468.
    1. Chan B, Aneman A. A prospective, observational study of cerebrovascular autoregulation and its association with delirium following cardiac surgery. Anaesthesia. 2019;74(1):33–44. doi: 10.1111/anae.14457.
    1. Czosnyka M, Hutchinson P, Smielewski P. Treatment targets based on autoregulation parameters in neurocritical care patients. Curr Opin Crit Care. 2020;26(2):109–114.
    1. Skrifvars MB, Aneman A, Ameloot K. Individualized blood pressure targets during postcardiac arrest intensive care. Curr Opin Crit Care. 2020;26(3):259–266. doi: 10.1097/MCC.0000000000000722.
    1. Tan CO. Defining the characteristic relationship between arterial pressure and cerebral flow. J Appl Physiol (1985) 2012, 113(8):1194–1200.
    1. Nolan JP, Sandroni C, Bottiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–269. doi: 10.1016/j.resuscitation.2021.02.012.
    1. Drummond JC. Blood pressure and the brain: How low can you go? Anesth Analg. 2019;128(4):759–771. doi: 10.1213/ANE.0000000000004034.
    1. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39(2):183–238. doi: 10.1152/physrev.1959.39.2.183.
    1. Buunk G, van der Hoeven JG, Meinders AE. Cerebral blood flow after cardiac arrest. Neth J Med. 2000;57(3):106–112. doi: 10.1016/S0300-2977(00)00059-0.
    1. Cohan SL, Mun SK, Petite J, Correia J. Tavelra Da Silva AT, Waldhorn RE: Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke. 1989;20(6):761–765. doi: 10.1161/01.STR.20.6.761.
    1. Lemiale V, Huet O, Vigue B, Mathonnet A, Spaulding C, Mira JP, Carli P, Duranteau J, Cariou A. Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation. 2008;76(1):17–24. doi: 10.1016/j.resuscitation.2007.06.028.
    1. Peng A, Chua MJ, Chan B, Jaeger M, Aneman A, Chuan A. Tissue oxygenation indices of cerebrovascular autoregulation in healthy volunteers: a comparison of two NIRS devices. Neurol Res. 2020;42(10):897–903. doi: 10.1080/01616412.2020.1790869.
    1. Hoiland RL, Sekhon MS, Cardim D, Wood MD, Gooderham P, Foster D, Griesdale DE. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest. Resuscitation. 2020;152:184–191. doi: 10.1016/j.resuscitation.2020.03.016.
    1. Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, Aries MJH. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother. 2017;17(8):801–818. doi: 10.1080/14737175.2017.1346472.
    1. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, Mirski M, Ziai WC, Hogue C. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care. 2017;27(3):362–369. doi: 10.1007/s12028-017-0421-8.
    1. Caccioppola A, Carbonara M, Macri M, Longhi L, Magnoni S, Ortolano F, Triulzi F, Zanier ER, Zoerle T, Stocchetti N. Ultrasound-tagged near-infrared spectroscopy does not disclose absent cerebral circulation in brain-dead adults. Br J Anaesth. 2018;121(3):588–594. doi: 10.1016/j.bja.2018.04.038.
    1. Sekhon MS, Ainslie PN, Menon DK, Thiara SS, Cardim D, Gupta AK, Hoiland RL, Gooderham P, Griesdale DE. Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest. Crit Care Med. 2020;48(3):378–384. doi: 10.1097/CCM.0000000000004138.
    1. Goodson CM, Rosenblatt K, Rivera-Lara L, Nyquist P, Hogue CW. Cerebral blood flow autoregulation in sepsis for the intensivist: why its monitoring may be the future of individualized care. J Intensive Care Med. 2018;33(2):63–73. doi: 10.1177/0885066616673973.
    1. Nakano M, Nomura Y, Whitman G, Sussman M, Schena S, Kilic A, Choi CW, Akiyoshi K, Neufeld KJ, Lawton J, et al. Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. Br J Anaesth. 2021;126(5):967–974. doi: 10.1016/j.bja.2020.12.043.
    1. Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, Pickard JD, Smielewski P. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41(9):1963–1968. doi: 10.1161/STROKEAHA.109.577320.
    1. Highton D, Ghosh A, Tachtsidis I, Panovska-Griffiths J, Elwell CE, Smith M. Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy. Anesth Analg. 2015;121(1):198–205. doi: 10.1213/ANE.0000000000000790.

Source: PubMed

3
Suscribir