Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit

Jean-François Timsit, Julien Baleine, Louis Bernard, Silvia Calvino-Gunther, Michael Darmon, Jean Dellamonica, Eric Desruennes, Marc Leone, Alain Lepape, Olivier Leroy, Jean-Christophe Lucet, Zied Merchaoui, Olivier Mimoz, Benoit Misset, Jean-Jacques Parienti, Jean-Pierre Quenot, Antoine Roch, Matthieu Schmidt, Michel Slama, Bertrand Souweine, Jean-Ralph Zahar, Walter Zingg, Laetitia Bodet-Contentin, Virginie Maxime, Jean-François Timsit, Julien Baleine, Louis Bernard, Silvia Calvino-Gunther, Michael Darmon, Jean Dellamonica, Eric Desruennes, Marc Leone, Alain Lepape, Olivier Leroy, Jean-Christophe Lucet, Zied Merchaoui, Olivier Mimoz, Benoit Misset, Jean-Jacques Parienti, Jean-Pierre Quenot, Antoine Roch, Matthieu Schmidt, Michel Slama, Bertrand Souweine, Jean-Ralph Zahar, Walter Zingg, Laetitia Bodet-Contentin, Virginie Maxime

Abstract

The French Society of Intensive Care Medicine (SRLF), jointly with the French-Speaking Group of Paediatric Emergency Rooms and Intensive Care Units (GFRUP) and the French-Speaking Association of Paediatric Surgical Intensivists (ADARPEF), worked out guidelines for the management of central venous catheters (CVC), arterial catheters and dialysis catheters in intensive care unit. For adult patients: Using GRADE methodology, 36 recommendations for an improved catheter management were produced by the 22 experts. Recommendations regarding catheter-related infections' prevention included the preferential use of subclavian central vein (GRADE 1), a one-step skin disinfection(GRADE 1) using 2% chlorhexidine (CHG)-alcohol (GRADE 1), and the implementation of a quality of care improvement program. Antiseptic- or antibiotic-impregnated CVC should likely not be used (GRADE 2, for children and adults). Catheter dressings should likely not be changed before the 7th day, except when the dressing gets detached, soiled or impregnated with blood (GRADE 2- adults). CHG dressings should likely be used (GRADE 2+). For adults and children, ultrasound guidance should be used to reduce mechanical complications in case of internal jugular access (GRADE 1), subclavian access (Grade 2) and femoral venous, arterial radial and femoral access (Expert opinion). For children, an ultrasound-guided supraclavicular approach of the brachiocephalic vein was recommended to reduce the number of attempts for cannulation and mechanical complications. Based on scarce publications on diagnostic and therapeutic strategies and on their experience (expert opinion), the panel proposed definitions, and therapeutic strategies.

Keywords: Bacteremia; Catheter; Critically ill; Infection; Prevention; Sepsis.

Conflict of interest statement

JFT: Research Grant from 3M, Astelas, Merck, Pfizer, Biomerieux to my university. Lectures in symposium:3M, Merck, Biomerieux, Novartis, Pfizer, Gilead. Participation to scientific board: Merck, 3M, Pfizer, Nabriva, Bayer Pharma, Gilead.

MD: Grant from MSD, lecture for MSD, Astellas, Gilead and participation to meeting from Gilead.

ML: Lectures for 3M, Aspen, BioMerieux, MSD, Octopharma, Orion, Pfizer; Consulting for Amomed, Aguettant; Travel expense: LFB.

AL: consulting for Fresenius. Lecture in symposium: Pfizer.

OM: Grant and lecture for BD, 3M.

MSc: lecture for Getinge, 3M, Drager.

BS: lecture for MSD. Participation to medical meeting for Gilead, Bard; IDSA meeting for Sanofi.

JRZ: Grant from MDS, lecture for MSD, EUMEDICA, Pfizer, Correvio.

The remaining authors declare no conflict of interest.

References

    1. Günther SC, Schwebel C, Hamidfar-Roy R, Bonadona A, Lugosi M, Ara-Somohano C, et al. Complications of intravascular catheters in ICU: definitions, incidence and severity. A randomized controlled trial comparing usual transparent dressings versus new-generation dressings (the ADVANCED study) Intensive Care Med. 2016;42(11):1753–1765.
    1. Timsit J-F, Rupp M, Bouza E, Chopra V, Kärpänen T, Laupland K, et al. A state of the art review on optimal practices to prevent, recognize, and manage complications associated with intravascular devices in the critically ill. Intensive Care Med. 2018;44:742–759.
    1. van der Kooi T, Sax H, Pittet D, van Dissel J, van Benthem B, Walder B, et al. Prevention of hospital infections by intervention and training (PROHIBIT): results of a pan-European cluster-randomized multicentre study to reduce central venous catheter-related bloodstream infections. Intensive Care Med. 2018;44(1):48–60.
    1. O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–e193.
    1. Rijnders BJ, Peetermans WE, Verwaest C, Wilmer A, Van Wijngaerden E. Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med. 2004;30(6):1073–1080.
    1. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.
    1. Parienti J-J. Catheter-related bloodstream infection in jugular versus subclavian central catheterization. Crit Care Med. 2017;45(7):e734–e735.
    1. Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis*. Crit Care Med. 2012;40(8):2479–2485.
    1. Arvaniti K, Lathyris D, Blot S, Apostolidou-Kiouti F, Koulenti D, Haidich A-B. Cumulative evidence of randomized controlled and observational studies on catheter-related infection risk of central venous catheter insertion site in ICU patients: a pairwise and network meta-analysis. Crit Care Med. 2017;45(4):e437–e448.
    1. Parienti J-J, du Cheyron D, Timsit J-F, Traoré O, Kalfon P, Mimoz O, et al. Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults*. Crit Care Med. 2012;40:1627–1634.
    1. Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–707.
    1. Parienti J-J, Mongardon N, Mégarbane B, Mira J-P, Kalfon P, Gros A, et al. Intravascular complications of central venous catheterization by insertion site. N Engl J Med. 2015;373(13):1220–1229.
    1. Lorente L, Jiménez A, Galván R, García C, Castedo J, Martín MM, et al. Equivalence of posterior internal jugular and subclavian accesses in the incidence of central venous catheter related bacteremia. Intensive Care Med. 2007;33(12):2230–2231.
    1. Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang F-L. Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev. 2012;3:CD004084.
    1. Timsit J-F, Bouadma L, Mimoz O, Parienti J-J, Garrouste-Orgeas M, Alfandari S, et al. Jugular versus femoral short-term catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. Am J Respir Crit Care Med. 2013;188(10):1232–1239.
    1. Gowardman JR, Robertson IK, Parkes S, Rickard CM. Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med. 2008;34(6):1038–1045.
    1. Souweine B, Liotier J, Heng AE, Isnard M, Ackoundou-N’Guessan C, Deteix P, et al. Catheter colonization in acute renal failure patients: comparison of central venous and dialysis catheters. Am J Kidney Dis. 2006;47(5):879–887.
    1. Maya ID, Allon M. Outcomes of tunneled femoral hemodialysis catheters: comparison with internal jugular vein catheters. Kidney Int. 2005;68(6):2886–2889.
    1. Murr MM, Rosenquist MD, Lewis RW, Heinle JA, Kealey GP. A prospective safety study of femoral vein versus nonfemoral vein catheterization in patients with burns. J Burn Care Rehabil. 1991;12(6):576–578.
    1. Kemp L, Burge J, Choban P, Harden J, Mirtallo J, Flancbaum L. The effect of catheter type and site on infection rates in total parenteral nutrition patients. J Parenter Enter Nutr. 1994;18(1):71–74.
    1. Parienti J-J, Thirion M, Mégarbane B, Souweine B, Ouchikhe A, Polito A, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299(20):2413.
    1. Nakae H, Igarashi T, Tajimi K. Catheter-related infections via temporary vascular access catheters: a randomized prospective study. Artif Organs. 2010;34(3):E72–E76.
    1. Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet Lond Engl. 1991;338(8763):339–343.
    1. Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med. 2002;136(11):792–801.
    1. Maiwald M, Chan ESY. Pitfalls in evidence assessment: the case of chlorhexidine and alcohol in skin antisepsis. J Antimicrob Chemother. 2014;69(8):2017–2021.
    1. Mimoz O, Lucet J-C, Kerforne T, Pascal J, Souweine B, Goudet V, et al. Skin antisepsis with chlorhexidine–alcohol versus povidone iodine–alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet. 2015;386(10008):2069–2077.
    1. SITES Study Group. Pages J, Hazera P, Mégarbane B, du Cheyron D, Thuong M, et al. Comparison of alcoholic chlorhexidine and povidone–iodine cutaneous antiseptics for the prevention of central venous catheter-related infection: a cohort and quasi-experimental multicenter study. Intensive Care Med. 2016;42(9):1418–1426.
    1. Mimoz O, Chopra V, Timsit J-F. What’s new in catheter-related infection: skin cleansing and skin antisepsis. Intensive Care Med. 2016;42(11):1784–1786.
    1. Lorente L. What is new for the prevention of catheter-related bloodstream infections? Ann Transl Med. 2016;4(6):119–119.
    1. Lai NM, Lai NA, O’Riordan E, Chaiyakunapruk N, Taylor JE, Tan K. Skin antisepsis for reducing central venous catheter-related infections. Cochrane Database Syst Rev. 2016 doi: 10.1002/14651858.cd010140.pub2.
    1. Casey AL, Badia JM, Higgins A, Korndorffer J, Mantyh C, Mimoz O, et al. Skin antisepsis: it’s not only what you use, it’s the way that you use it. J Hosp Infect. 2017;96(3):221–222.
    1. Lai NM, Chaiyakunapruk N, Lai NA, O’Riordan E, Pau WSC, Saint S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev. 2016 doi: 10.1002/14651858.cd007878.pub3.
    1. Shah PS, Shah N. Heparin-bonded catheters for prolonging the patency of central venous catheters in children. Cochrane Database Syst Rev. 2014;2:CD005983.
    1. Roberts B, Cheung D. Biopatch–a new concept in antimicrobial dressings for invasive devices. Aust Crit Care. 1998;11(1):16–19.
    1. Levy I, Katz J, Solter E, Samra Z, Vidne B, Birk E, et al. Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study. Pediatr Infect Dis J. 2005;24(8):676–679.
    1. Timsit J-F, Schwebel C, Bouadma L, Geffroy A, Garrouste-Orgeas M, Pease S, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231.
    1. Timsit J-F, Mimoz O, Mourvillier B, Souweine B, Garrouste-Orgeas M, Alfandari S, et al. Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med. 2012;186(12):1272–1278.
    1. Arvaniti K, Lathyris D, Clouva-Molyvdas P, Haidich A-B, Mouloudi E, Synnefaki E, et al. Comparison of Oligon catheters and chlorhexidine-impregnated sponges with standard multilumen central venous catheters for prevention of associated colonization and infections in intensive care unit patients: a multicenter, randomized, controlled study*. Crit Care Med. 2012;40(2):420–429.
    1. Ho KM. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother. 2006;58(2):281–287.
    1. Safdar N, O’Horo JC, Ghufran A, Bearden A, Didier ME, Chateau D, et al. Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis*. Crit Care Med. 2014;42(7):1703–1713.
    1. Ullman AJ, Cooke ML, Mitchell M, Lin F, New K, Long DA, et al. Dressing and securement for central venous access devices (CVADs): a cochrane systematic review. Int J Nurs Stud. 2016;59:177–196.
    1. Wall JB, Divito SJ, Talbot SG. Chlorhexidine gluconate–impregnated central-line dressings and necrosis in complicated skin disorder patients. J Crit Care. 2014;29(6):1130.e1–1130.e4.
    1. Weitz NA, Lauren CT, Weiser JA, LeBoeuf NR, Grossman ME, Biagas K, et al. Chlorhexidine gluconate-impregnated central access catheter dressings as a cause of erosive contact dermatitis: a report of 7 cases. JAMA Dermatol. 2013;149(2):195.
    1. Crawford AG, Fuhr JP, Rao B. Cost-benefit analysis of chlorhexidine gluconate dressing in the prevention of catheter-related bloodstream infections. Infect Control Hosp Epidemiol. 2004;25(08):668–674.
    1. Ye X, Rupnow M, Bastide P, Lafuma A, Ovington L, Jarvis WR. Economic impact of use of chlorhexidine-impregnated sponge dressing for prevention of central line-associated infections in the United States. Am J Infect Control. 2011;39(8):647–654.
    1. Schwebel C, Lucet JC, Vesin A, Arrault X, Calvino-Gunther S, Bouadma L, et al. Economic evaluation of chlorhexidine-impregnated sponges for preventing catheter-related infections in critically ill adults in the dressing study*. Crit Care Med. 2012;40(1):11–17.
    1. Maunoury F, Motrunich A, Palka-Santini M, Bernatchez SF, Ruckly S, Timsit J-F. Cost-effectiveness analysis of a transparent antimicrobial dressing for managing central venous and arterial catheters in intensive care units. PLOS ONE. 2015;10(6):e0130439.
    1. Thokala P, Arrowsmith M, Poku E, Martyn-St James M, Anderson J, Foster S, et al. Economic impact of Tegaderm chlorhexidine gluconate (CHG) dressing in critically ill patients. J Infect Prev. 2016;17(5):216–223.
    1. Benhamou E, Fessard E, Com-Nougué C, Beaussier P, Nitenberg G, Tancrède C, et al. Less frequent catheter dressing changes decrease local cutaneous toxicity of high-dose chemotherapy in children, without increasing the rate of catheter-related infections: results of a randomised trial. Bone Marrow Transplant. 2002;29(8):653–658.
    1. Engervall P, Ringertz S, Hagman E, Skogman K, Björkholm M. Change of central venous catheter dressings twice a week is superior to once a week in patients with haematological malignancies. J Hosp Infect. 1995;29(4):275–286.
    1. Vokurka S, Bystricka E, Visokaiova M, Scudlova J. Once- versus twice-weekly changing of central venous catheter occlusive dressing in intensive chemotherapy patients: results of a randomized multicenter study. Med Sci Monit Int Med J Exp Clin Res. 2009;15(3):CR107–110.
    1. Karakitsos D, Labropoulos N, De Groot E, Patrianakos AP, Kouraklis G, Poularas J, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care Lond Engl. 2006;10(6):R162.
    1. Slama M, Novara A, Safavian A, Ossart M, Safar M, Fagon JY. Improvement of internal jugular vein cannulation using an ultrasound-guided technique. Intensive Care Med. 1997;23(8):916–919.
    1. Teichgräber UK, Benter T, Gebel M, Manns MP. A sonographically guided technique for central venous access. AJR Am J Roentgenol. 1997;169(3):731–733.
    1. Milling TJ, Rose J, Briggs WM, Birkhahn R, Gaeta TJ, Bove JJ, et al. Randomized, controlled clinical trial of point-of-care limited ultrasonography assistance of central venous cannulation: the Third Sonography Outcomes Assessment Program (SOAP-3) Trial. Crit Care Med. 2005;33(8):1764–1769.
    1. Palepu GB, Deven J, Subrahmanyam M, Mohan S. Impact of ultrasonography on central venous catheter insertion in intensive care. Indian J Radiol Imaging. 2009;19(3):191–198.
    1. Airapetian N, Maizel J, Langelle F, Modeliar SS, Karakitsos D, Dupont H, et al. Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med. 2013;39(11):1938–1944.
    1. Mallory DL, McGee WT, Shawker TH, Brenner M, Bailey KR, Evans RG, et al. Ultrasound guidance improves the success rate of internal jugular vein cannulation. A prospective, randomized trial. Chest. 1990;98(1):157–160.
    1. Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev. 2015;1:CD006962.
    1. Shime N, Hosokawa K, MacLaren G. Ultrasound imaging reduces failure rates of percutaneous central venous catheterization in children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2015;16(8):718–725.
    1. Lalu MM, Fayad A, Ahmed O, Bryson GL, Fergusson DA, Barron CC, et al. Ultrasound-guided subclavian vein catheterization: a systematic review and meta-analysis. Crit Care Med. 2015;43(7):1498–1507.
    1. Fragou M, Gravvanis A, Dimitriou V, Papalois A, Kouraklis G, Karabinis A, et al. Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: a prospective randomized study. Crit Care Med. 2011;39(7):1607–1612.
    1. Oh A-Y, Jeon Y-T, Choi E-J, Ryu J-H, Hwang J-W, Park H-P, et al. The influence of the direction of J-tip on the placement of a subclavian catheter: real time ultrasound-guided cannulation versus landmark method, a randomized controlled trial. BMC Anesthesiol. 2014;14(1):1–4.
    1. Vezzani A, Manca T, Brusasco C, Santori G, Cantadori L, Ramelli A, et al. A randomized clinical trial of ultrasound-guided infra-clavicular cannulation of the subclavian vein in cardiac surgical patients: short-axis versus long-axis approach. Intensive Care Med. 2017;43(11):1594–1601.
    1. Vogel JA, Haukoos JS, Erickson CL, Liao MM, Theoret J, Sanz GE, et al. Is long-axis view superior to short-axis view in ultrasound-guided central venous catheterization? Crit Care Med. 2015;43(4):832–839.
    1. Gualtieri E, Deppe SA, Sipperly ME, Thompson DR. Subclavian venous catheterization: greater success rate for less experienced operators using ultrasound guidance. Crit Care Med. 1995;23(4):692–697.
    1. Kim E-H, Lee J-H, Song I-K, Kim H-S, Jang Y-E, Choi S-N, et al. Real-time ultrasound-guided axillary vein cannulation in children: a randomised controlled trial. Anaesthesia. 2017;72(12):1516–1522.
    1. Sobolev M, Slovut DP, Lee Chang A, Shiloh AL, Eisen LA. Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol. 2015;27(7):318–323.
    1. White L, Halpin A, Turner M, Wallace L. Ultrasound-guided radial artery cannulation in adult and paediatric populations: a systematic review and meta-analysis. Br J Anaesth. 2016;116(5):610–617.
    1. Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C. Time-series analysis to observe the impact of a centrally organized educational intervention on the prevention of central-line-associated bloodstream infections in 32 German intensive care units. J Hosp Infect. 2014;87(4):220–226.
    1. Levin PD, Sheinin O, Gozal Y. Use of ultrasound guidance in the insertion of radial artery catheters: Crit Care Med. 2003;31(2):481–484.
    1. Peters C, Schwarz SKW, Yarnold CH, Kojic K, Kojic S, Head SJ. Ultrasound guidance versus direct palpation for radial artery catheterization by expert operators: a randomized trial among Canadian cardiac anesthesiologists. Can J Anesth Can Anesth. 2015;62(11):1161–1168.
    1. Ueda K, Bayman EO, Johnson C, Odum NJ, Lee JJY. A randomised controlled trial of radial artery cannulation guided by Doppler vs palpation vs ultrasound. Anaesthesia. 2015;70(9):1039–1044.
    1. Plachouras D, Lepape A, Suetens C. ECDC definitions and methods for the surveillance of healthcare-associated infections in intensive care units. Intensive Care Med. 2018;44(12):2216–2218.
    1. Plachouras D, Lepape A, Suetens C. Correction to: ECDC definitions and methods for the surveillance of healthcare-associated infections in intensive care units. Intensive Care Med. 2018;44(11):2020.
    1. Hansen S, Sohr D, Geffers C, Astagneau P, Blacky A, Koller W, et al. Concordance between European and US case definitions of healthcare-associated infections. Antimicrob Resist Infect Control. 2012;1(1):28.
    1. Craven TH, Wojcik G, McCoubrey J, Brooks O, Grant E, Reilly J, et al. Lack of concordance between ECDC and CDC systems for surveillance of ventilator associated pneumonia. Intensive Care Med. 2017;44:265–266.
    1. Haley RW, Culver DH, White JW, Morgan WM, Emori TG, Munn VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol. 1985;121(2):182–205.
    1. Gastmeier P, Schwab F, Sohr D, Behnke M, Geffers C. Reproducibility of the surveillance effect to decrease nosocomial infection rates. Infect Control Hosp Epidemiol. 2009;30(10):993–999.
    1. Bénet T, Ecochard R, Voirin N, Machut A, Lepape A, Savey A, et al. Effect of standardized surveillance of intensive care unit-acquired infections on ventilator-associated pneumonia incidence. Infect Control Hosp Epidemiol. 2014;35(10):1290–1293.
    1. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–2732.
    1. Palomar M, Álvarez-Lerma F, Riera A, Díaz MT, Torres F, Agra Y, et al. Impact of a national multimodal intervention to prevent catheter-related bloodstream infection in the ICU: the Spanish experience. Crit Care Med. 2013;41(10):2364–2372.
    1. ECDC. Surveillance of healthcare-associated infections and prevention indicators in European intensive care units: HAI-Net ICU protocol, version 2.2. European Centre for Disease Prevention and Control. 2017. . Accessed 23 Jan 2018.
    1. Santé Publique France. Surveillance des infections nosocomiales en réanimation adulte/2017/Maladies infectieuses/Rapports et synthèses/Publications et outils/Accueil. . Accessed 27 Dec 2017.
    1. Rodríguez-Acelas AL, de Abreu Almeida M, Engelman B, Cañon-Montañez W. Risk factors for health care-associated infection in hospitalized adults: systematic review and meta-analysis. Am J Infect Control. 2017;45(12):e149–e156.
    1. van Santen KL, Edwards JR, Webb AK, Pollack LA, O’Leary E, Neuhauser MM, et al. The standardized antimicrobial administration ratio: a new metric for measuring and comparing antibiotic use. Clin Infect Dis. 2018;67:179–185.
    1. Sanagou M, Leder K, Cheng AC, Pilcher D, Reid CM, Wolfe R. Associations of hospital characteristics with nosocomial pneumonia after cardiac surgery can impact on standardized infection rates. Epidemiol Infect. 2016;144(5):1065–1074.
    1. Abramczyk ML, Carvalho WB, Medeiros EAS. Preventing catheter-associated infections in the Pediatric Intensive Care Unit: impact of an educational program surveying policies for insertion and care of central venous catheters in a Brazilian teaching hospital. Braz J Infect Dis Off Publ Braz Soc Infect Dis. 2011;15(6):573–577.
    1. Ahmed SS, McCaskey MS, Bringman S, Eigen H. Catheter-associated bloodstream infection in the pediatric intensive care unit: a multidisciplinary approach. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2012;13(2):e69–e72.
    1. Allen GB, Miller V, Nicholas C, Hess S, Cordes MK, Fortune JB, et al. A multitiered strategy of simulation training, kit consolidation, and electronic documentation is associated with a reduction in central line-associated bloodstream infections. Am J Infect Control. 2014;42(6):643–648.
    1. Apisarnthanarak A, Thongphubeth K, Yuekyen C, Warren DK, Fraser VJ. Effectiveness of a catheter-associated bloodstream infection bundle in a Thai tertiary care center: a 3-year study. Am J Infect Control. 2010;38(6):449–455.
    1. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.
    1. Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420–1423.
    1. Berenholtz SM, Lubomski LH, Weeks K, Goeschel CA, Marsteller JA, Pham JC, et al. Eliminating central line-associated bloodstream infections: a national patient safety imperative. Infect Control Hosp Epidemiol. 2014;35(1):56–62.
    1. Bion J, Richardson A, Hibbert P, Beer J, Abrusci T, McCutcheon M, et al. “Matching Michigan”: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf. 2013;22(2):110–123.
    1. Central Line Associated Bacteraemia in NSW Intensive Care Units (CLAB ICU) Collaborative. Burrell AR, McLaws M-L, Murgo M, Calabria E, Pantle AC, et al. Aseptic insertion of central venous lines to reduce bacteraemia. Med J Aust. 2011;194(11):583–587.
    1. Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC. Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics. 2008;121(5):915–923.
    1. DePalo VA, McNicoll L, Cornell M, Rocha JM, Adams L, Pronovost PJ. The Rhode Island ICU collaborative: a model for reducing central line-associated bloodstream infection and ventilator-associated pneumonia statewide. Qual Saf Health Care. 2010;19(6):555–561.
    1. Duane TM, Brown H, Borchers CT, Wolfe LG, Malhotra AK, Aboutanos MB, et al. A central venous line protocol decreases bloodstream infections and length of stay in a trauma intensive care unit population. Am Surg. 2009;75(12):1166–1170.
    1. Esteban E, Ferrer R, Urrea M, Suarez D, Rozas L, Balaguer M, et al. The impact of a quality improvement intervention to reduce nosocomial infections in a PICU. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2013;14(5):525–532.
    1. Exline MC, Ali NA, Zikri N, Mangino JE, Torrence K, Vermillion B, et al. Beyond the bundle–journey of a tertiary care medical intensive care unit to zero central line-associated bloodstream infections. Crit Care Lond Engl. 2013;17(2):R41.
    1. Galpern D, Guerrero A, Tu A, Fahoum B, Wise L. Effectiveness of a central line bundle campaign on line-associated infections in the intensive care unit. Surgery. 2008;144(4):492–495.
    1. Guerin K, Wagner J, Rains K, Bessesen M. Reduction in central line-associated bloodstream infections by implementation of a postinsertion care bundle. Am J Infect Control. 2010;38(6):430–433.
    1. Hocking C, Pirret AM. Using a combined nursing and medical approach to reduce the incidence of central line associated bacteraemia in a New Zealand critical care unit: a clinical audit. Intensive Crit Care Nurs. 2013;29(3):137–146.
    1. Hong AL, Sawyer MD, Shore A, Winters BD, Masuga M, Lee H, et al. Decreasing central-line-associated bloodstream infections in Connecticut intensive care units. J Healthc Qual. 2013;35(5):78–87.
    1. Jaggi N, Rodrigues C, Rosenthal VD, Todi SK, Shah S, Saini N, et al. Impact of an international nosocomial infection control consortium multidimensional approach on central line-associated bloodstream infection rates in adult intensive care units in eight cities in India. Int J Infect Dis IJID. 2013;17(12):e1218–e1224.
    1. Jeong IS, Park SM, Lee JM, Song JY, Lee SJ. Effect of central line bundle on central line-associated bloodstream infections in intensive care units. Am J Infect Control. 2013;41(8):710–716.
    1. Khalid I, Al Salmi H, Qushmaq I, Al Hroub M, Kadri M, Qabajah MR. Itemizing the bundle: achieving and maintaining “zero” central line-associated bloodstream infection for over a year in a tertiary care hospital in Saudi Arabia. Am J Infect Control. 2013;41(12):1209–1213.
    1. Khouli H, Jahnes K, Shapiro J, Rose K, Mathew J, Gohil A, et al. Performance of medical residents in sterile techniques during central vein catheterization: randomized trial of efficacy of simulation-based training. Chest. 2011;139(1):80–87.
    1. Kim JS, Holtom P, Vigen C. Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control. 2011;39(8):640–646.
    1. Klintworth G, Stafford J, O’Connor M, Leong T, Hamley L, Watson K, et al. Beyond the intensive care unit bundle: implementation of a successful hospital-wide initiative to reduce central line-associated bloodstream infections. Am J Infect Control. 2014;42(6):685–687.
    1. Latif A, Kelly B, Edrees H, Kent PS, Weaver SJ, Jovanovic B, et al. Implementing a multifaceted intervention to decrease central line-associated bloodstream infections in SEHA (Abu Dhabi Health Services Company) intensive care units: the Abu Dhabi experience. Infect Control Hosp Epidemiol. 2015;36(7):816–822.
    1. Leblebicioglu H, Öztürk R, Rosenthal VD, Akan ÖA, Sirmatel F, Ozdemir D, et al. Impact of a multidimensional infection control approach on central line-associated bloodstream infections rates in adult intensive care units of 8 cities of Turkey: findings of the International Nosocomial Infection Control Consortium (INICC) Ann Clin Microbiol Antimicrob. 2013;12:10.
    1. Marra AR, Cal RGR, Durão MS, Correa L, Guastelli LR, Moura DF, et al. Impact of a program to prevent central line-associated bloodstream infection in the zero tolerance era. Am J Infect Control. 2010;38(6):434–439.
    1. Marsteller JA, Sexton JB, Hsu Y-J, Hsiao C-J, Holzmueller CG, Pronovost PJ, et al. A multicenter, phased, cluster-randomized controlled trial to reduce central line-associated bloodstream infections in intensive care units*. Crit Care Med. 2012;40(11):2933–2939.
    1. McLaws M-L, Burrell AR. Zero risk for central line-associated bloodstream infection: are we there yet? Crit Care Med. 2012;40(2):388–393.
    1. Miller MR, Griswold M, Harris JM, Yenokyan G, Huskins WC, Moss M, et al. Decreasing PICU catheter-associated bloodstream infections: nACHRI’s quality transformation efforts. Pediatrics. 2010;125(2):206–213.
    1. Mueller JT, Wright AJ, Fedraw LA, Murad MH, Brown DR, Thompson KM, et al. Standardizing central line safety: lessons learned for physician leaders. Am J Med Qual Off J Am Coll Med Qual. 2014;29(3):191–199.
    1. Pageler NM, Longhurst CA, Wood M, Cornfield DN, Suermondt J, Sharek PJ, et al. Use of electronic medical record-enhanced checklist and electronic dashboard to decrease CLABSIs. Pediatrics. 2014;133(3):e738–e746.
    1. Peredo R, Sabatier C, Villagrá A, González J, Hernández C, Pérez F, et al. Reduction in catheter-related bloodstream infections in critically ill patients through a multiple system intervention. Eur J Clin Microbiol Infect Dis. 2010;29(9):1173–1177.
    1. Pérez Parra A, Cruz Menárguez M, Pérez Granda MJ, Tomey MJ, Padilla B, Bouza E. A simple educational intervention to decrease incidence of central line-associated bloodstream infection (CLABSI) in intensive care units with low baseline incidence of CLABSI. Infect Control Hosp Epidemiol. 2010;31(9):964–967.
    1. Render ML, Hasselbeck R, Freyberg RW, Hofer TP, Sales AE, Almenoff PL, et al. Reduction of central line infections in Veterans Administration intensive care units: an observational cohort using a central infrastructure to support learning and improvement. BMJ Qual Saf. 2011;20(8):725–732.
    1. Rosenthal VD, Maki DG, Rodrigues C, Alvarez-Moreno C, Leblebicioglu H, Sobreyra-Oropeza M, et al. Impact of International Nosocomial Infection Control Consortium (INICC) strategy on central line-associated bloodstream infection rates in the intensive care units of 15 developing countries. Infect Control Hosp Epidemiol. 2010;31(12):1264–1272.
    1. Rosenthal VD, Ramachandran B, Villamil-Gómez W, Armas-Ruiz A, Navoa-Ng JA, Matta-Cortés L, et al. Impact of a multidimensional infection control strategy on central line-associated bloodstream infection rates in pediatric intensive care units of five developing countries: findings of the International Nosocomial Infection Control Consortium (INICC) Infection. 2012;40(4):415–423.
    1. Sacks GD, Diggs BS, Hadjizacharia P, Green D, Salim A, Malinoski DJ. Reducing the rate of catheter-associated bloodstream infections in a surgical intensive care unit using the Institute for Healthcare Improvement Central Line Bundle. Am J Surg. 2014;207(6):817–823.
    1. Santana SL, Furtado GHC, Wey SB, Medeiros EAS. Impact of an education program on the incidence of central line-associated bloodstream infection in 2 medical-surgical intensive care units in Brazil. Infect Control Hosp Epidemiol. 2008;29(12):1171–1173.
    1. Tang H-J, Lin H-L, Lin Y-H, Leung P-O, Chuang Y-C, Lai C-C. The impact of central line insertion bundle on central line-associated bloodstream infection. BMC Infect Dis. 2014;14:356.
    1. Taylor M, Hussain A, Urayama K, Chokkalingam A, Thompson P, Trachtenberg E, et al. The human major histocompatibility complex and childhood leukemia: an etiological hypothesis based on molecular mimicry. Blood Cells Mol Dis. 2009;42(2):129–135.
    1. Venkatram S, Rachmale S, Kanna B. Study of device use adjusted rates in health care-associated infections after implementation of “bundles” in a closed-model medical intensive care unit. J Crit Care. 2010;25(1):174.e11–174.e18.
    1. Warren DK, Cosgrove SE, Diekema DJ, Zuccotti G, Climo MW, Bolon MK, et al. A multicenter intervention to prevent catheter-associated bloodstream infections. Infect Control Hosp Epidemiol. 2006;27(7):662–669.
    1. Zingg W, Imhof A, Maggiorini M, Stocker R, Keller E, Ruef C. Impact of a prevention strategy targeting hand hygiene and catheter care on the incidence of catheter-related bloodstream infections. Crit Care Med. 2009;37(7):2167–2173.
    1. Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma E, et al. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(6):724–734.
    1. Zingg W, Holmes A, Dettenkofer M, Goetting T, Secci F, Clack L, et al. Hospital organisation, management, and structure for prevention of health-care-associated infection: a systematic review and expert consensus. Lancet Infect Dis. 2015;15(2):212–224.
    1. Rijnders BJA, Van Wijngaerden E, Peetermans WE. Catheter-tip colonization as a surrogate end point in clinical studies on catheter-related bloodstream infection: how strong is the evidence? Clin Infect Dis. 2002;35(9):1053–1058.
    1. Guembe M, Rodríguez-Créixems M, Martín-Rabadán P, Alcalá L, Muñoz P, Bouza E. The risk of catheter-related bloodstream infection after withdrawal of colonized catheters is low. Eur J Clin Microbiol Infect Dis. 2014;33(5):729–734.
    1. Mrozek N, Lautrette A, Aumeran C, Laurichesse H, Forestier C, Traoré O, et al. Bloodstream infection after positive catheter cultures: what are the risks in the intensive care unit when catheters are routinely cultured on removal? Crit Care Med. 2011;39(6):1301–1305.
    1. Low incidence of subsequent bacteraemia or fungaemia after removal of a colonized intravascular catheter tip.—PubMed—NCBI. . Accessed 7 Sept 2018.
    1. Pérez-Granda MJ, Guembe M, Cruces R, Bouza E. Vascular catheter colonization: surveillance based on culture of needleless connectors. Crit Care Lond Engl. 2016;20(1):166.
    1. Timsit J-F, Lugosi M, Minet C, Schwebel C. Should we still need to systematically perform catheter culture in the intensive care unit? Crit Care Med. 2011;39(6):1556–1558.
    1. Fowler VG, Olsen MK, Corey GR, Woods CW, Cabell CH, Reller LB, et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med. 2003;163(17):2066–2072.
    1. Peacock SJ, Eddleston M, Emptage A, King A, Crook DW. Positive intravenous line tip cultures as predictors of bacteraemia. J Hosp Infect. 1998;40(1):35–38.
    1. López-Medrano F, Lora-Tamayo J, Fernández-Ruiz M, Losada I, Hernández P, Cepeda M, et al. Significance of the isolation of Staphylococcus aureus from a central venous catheter tip in the absence of concomitant bacteremia: a clinical approach. Eur J Clin Microbiol Infect Dis. 2016;35(11):1865–1869.
    1. Ruhe JJ, Menon A. Clinical significance of isolated Staphylococcus aureus central venous catheter tip cultures. Clin Microbiol Infect. 2006;12(9):933–936.
    1. Ekkelenkamp MB, van der Bruggen T, van de Vijver DAMC, Wolfs TFW, Bonten MJM. Bacteremic complications of intravascular catheters colonized with Staphylococcus aureus. Clin Infect Dis. 2008;46(1):114–118.
    1. Ye R, Zhao L, Wang C, Wu X, Yan H. Clinical characteristics of septic pulmonary embolism in adults: a systematic review. Respir Med. 2014;108(1):1–8.
    1. Ghanem GA, Boktour M, Warneke C, Pham-Williams T, Kassis C, Bahna P, et al. Catheter-related Staphylococcus aureus bacteremia in cancer patients: high rate of complications with therapeutic implications. Medicine (Baltimore). 2007;86(1):54–60.
    1. Raad I, Narro J, Khan A, Tarrand J, Vartivarian S, Bodey GP. Serious complications of vascular catheter-related Staphylococcus aureus bacteremia in cancer patients. Eur J Clin Microbiol Infect Dis. 1992;11(8):675–682.
    1. Chong YP, Moon SM, Bang K-M, Park HJ, Park S-Y, Kim M-N, et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother. 2013;57(3):1150–1156.
    1. Fernández-Cruz A, Cruz Menárguez M, Muñoz P, Pedromingo M, Peláez T, Solís J, et al. The search for endocarditis in patients with candidemia: a systematic recommendation for echocardiography? A prospective cohort. Eur J Clin Microbiol Infect Dis. 2015;34(8):1543–1549.
    1. Van Hal SJ, Mathur G, Kelly J, Aronis C, Cranney GB, Jones PD. The role of transthoracic echocardiography in excluding left sided infective endocarditis in Staphylococcus aureus bacteraemia. J Infect. 2005;51(3):218–221.
    1. Khatib R, Sharma M. Echocardiography is dispensable in uncomplicated Staphylococcus aureus bacteremia. Medicine (Baltimore). 2013;92(3):182–188.
    1. Kaasch AJ, Fowler VG, Rieg S, Peyerl-Hoffmann G, Birkholz H, Hellmich M, et al. Use of a simple criteria set for guiding echocardiography in nosocomial Staphylococcus aureus bacteremia. Clin Infect Dis. 2011;53(1):1–9.
    1. Rasmussen RV, Høst U, Arpi M, Hassager C, Johansen HK, Korup E, et al. Prevalence of infective endocarditis in patients with Staphylococcus aureus bacteraemia: the value of screening with echocardiography. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol. 2011;12(6):414–420.
    1. Joseph JP, Meddows TR, Webster DP, Newton JD, Myerson SG, Prendergast B, et al. Prioritizing echocardiography in Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2013;68(2):444–449.
    1. Buitron de la Vega P, Tandon P, Qureshi W, Nasr Y, Jayaprakash R, Arshad S, et al. Simplified risk stratification criteria for identification of patients with MRSA bacteremia at low risk of infective endocarditis: implications for avoiding routine transesophageal echocardiography in MRSA bacteremia. Eur J Clin Microbiol Infect Dis. 2016;35(2):261–268.
    1. Siegman-Igra Y, Anglim AM, Shapiro DE, Adal KA, Strain BA, Farr BM. Diagnosis of vascular catheter-related bloodstream infection: a meta-analysis. J Clin Microbiol. 1997;35(4):928–936.
    1. Quilici N, Audibert G, Conroy MC, Bollaert PE, Guillemin F, Welfringer P, et al. Differential quantitative blood cultures in the diagnosis of catheter-related sepsis in intensive care units. Clin Infect Dis. 1997;25(5):1066–1070.
    1. Catton JA, Dobbins BM, Kite P, Wood JM, Eastwood K, Sugden S, et al. In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med. 2005;33(4):787–791.
    1. Bouza E, Alvarado N, Alcalá L, Pérez MJ, Rincón C, Muñoz P. A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawal. Clin Infect Dis. 2007;44(6):820–826.
    1. Blot F, et al. Earlier positivity of central-venous- versus peripheral-blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol. 1998;36:105–109.
    1. Blot F, Nitenberg G, Chachaty E, Raynard B, Germann N, Antoun S, et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet Lond Engl. 1999;354(9184):1071–1077.
    1. Rijnders BJ, Verwaest C, Peetermans WE, Wilmer A, Vandecasteele S, Van Eldere J, et al. Difference in time to positivity of hub-blood versus nonhub-blood cultures is not useful for the diagnosis of catheter-related bloodstream infection in critically ill patients. Crit Care Med. 2001;29(7):1399–1403.
    1. García X, Sabatier C, Ferrer R, Fontanals D, Duarte M, Colomina M, et al. Differential time to positivity of blood cultures: a valid method for diagnosing catheter-related bloodstream infections in the intensive care unit. Med Intensiva. 2012;36(3):169–176.
    1. Gowardman JR, Jeffries P, Lassig-Smith M, Stuart J, Jarrett P, Deans R, et al. A comparative assessment of two conservative methods for the diagnosis of catheter-related infection in critically ill patients. Intensive Care Med. 2013;39(1):109–116.
    1. Trick WE, Vernon MO, Welbel SF, Wisniewski MF, Jernigan JA, Weinstein RA. Unnecessary use of central venous catheters: the need to look outside the intensive care unit. Infect Control Hosp Epidemiol. 2004;25(3):266–268.
    1. Burnham JP, Rojek RP, Kollef MH. Catheter removal and outcomes of multidrug-resistant central-line-associated bloodstream infection. Medicine (Baltimore). 2018;97(42):e12782.
    1. Lee Y-M, Moon C, Kim YJ, Lee HJ, Lee MS, Park K-H. Clinical impact of delayed catheter removal for patients with central-venous-catheter-related Gram-negative bacteraemia. J Hosp Infect. 2018;99(1):106–113.
    1. Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329.
    1. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36(2):222–231.
    1. Zakhour R, Chaftari A-M, Raad II. Catheter-related infections in patients with haematological malignancies: novel preventive and therapeutic strategies. Lancet Infect Dis. 2016;16(11):e241–e250.
    1. Legrand M, Max A, Peigne V, Mariotte E, Canet E, Debrumetz A, et al. Survival in neutropenic patients with severe sepsis or septic shock. Crit Care Med. 2012;40(1):43–49.
    1. Wilson Dib R, Chaftari A-M, Hachem RY, Yuan Y, Dandachi D, Raad II. Catheter-related Staphylococcus aureus bacteremia and septic thrombosis: the role of anticoagulation therapy and duration of intravenous antibiotic therapy. Open Forum Infect Dis. 2018;5(10):ofy249.
    1. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, et al. Impact of treatment strategy on outcomes in patients with candidemiacandidaemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012;54(8):1110–1122.
    1. Baldesi O, Bailly S, Ruckly S, Lepape A, L’Heriteau F, Aupee M, et al. ICU-acquired candidaemia in France: epidemiology and temporal trends, 2004–2013—a study from the REA-RAISIN network. J Infect. 2017;75(1):59–67.
    1. Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis. 2000;30(4):710–718.
    1. Bassetti M, Scudeller L, Giacobbe DR, Lamoth F, Righi E, Zuccaro V, et al. Developing definitions for invasive fungal diseases in critically ill adult patients in intensive care units. Protocol of the FUNgal infections Definitions in ICU patients (FUNDICU) project. Mycoses. 2018;62:310–319.
    1. Garnacho-Montero J, Dimopoulos G, Poulakou G, Akova M, Cisneros JM, De Waele J, et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015;41(12):2057–2075.
    1. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–e50.
    1. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT) Eur Respir J. 2017;50(3):1700582.
    1. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP) Pharmacotherapy. 2019;39(1):10–39.
    1. Timsit J-F, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med. 2019;45(2):172–189.
    1. Park K-H, Kim S-H, Song EH, Jang E-Y, Lee EJ, Chong YP, et al. Development of bacteraemia or fungaemia after removal of colonized central venous catheters in patients with negative concomitant blood cultures. Clin Microbiol Infect. 2010;16(6):742–746.
    1. Zafar U, Riederer K, Khatib R, Szpunar S, Sharma M. Relevance of isolating Staphylococcus aureus from intravascular catheters without positive blood culture. J Hosp Infect. 2009;71(2):193–195.
    1. Hetem DJ, de Ruiter SC, Buiting AGM, Kluytmans JAJW, Thijsen SF, Vlaminckx BJM, et al. Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine (Baltimore). 2011;90(4):284–288.
    1. Muñoz P, Fernández Cruz A, Usubillaga R, Zorzano A, Rodríguez-Créixems M, Guembe M, et al. Central venous catheter colonization with Staphylococcus aureus is not always an indication for antimicrobial therapy. Clin Microbiol Infect. 2012;18(9):877–882.
    1. van Eck van der Sluijs A, Oosterheert JJ, Ekkelenkamp MB, Hoepelman IM, Peters EJG. Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia. Eur J Clin Microbiol Infect Dis. 2012;31(6):1027–1033.
    1. Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ. Is central venous catheter tip colonization with Pseudomonas aeruginosa a predictor for subsequent bacteremia? Clin Infect Dis. 2012;54(4):581–583.
    1. Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ. Is central venous catheter tips’ colonization with multi-drug resistant Acinetobacter baumannii a predictor for bacteremia? Clin Infect Dis. 2011;52(8):1080–1082.
    1. Khatib R, Clark JA, Briski LE, Wilson FM. Relevance of culturing Candida species from intravascular catheters. J Clin Microbiol. 1995;33(6):1635–1637.
    1. Pérez-Parra A, Muñoz P, Guinea J, Martín-Rabadán P, Guembe M, Bouza E. Is Candida colonization of central vascular catheters in non-candidemic, non-neutropenic patients an indication for antifungals? Intensive Care Med. 2009;35(4):707–712.
    1. Leenders NHJ, Oosterheert JJ, Ekkelenkamp MB, De Lange DW, Hoepelman AIM, Peters EJG. Candidemic complications in patients with intravascular catheters colonized with Candida species: an indication for preemptive antifungal therapy? Int J Infect Dis IJID. 2011;15(7):e453–e458.
    1. López-Medrano F, Fernández-Ruiz M, Origüen J, Belarte-Tornero LC, Carazo-Medina R, Panizo-Mota F, et al. Clinical significance of Candida colonization of intravascular catheters in the absence of documented candidaemia. Diagn Microbiol Infect Dis. 2012;73(2):157–161.
    1. De Almeida BM, Breda GL, Queiroz-Telles F, Tuon FF. Positive tip culture with Candida and negative blood culture: to treat or not to treat? A systematic review with meta-analysis. Scand J Infect Dis. 2014;46(12):854–861.
    1. Zeylemaker MM, Jaspers CA, van Kraaij MG, Visser MR, Hoepelman IM. Long-term infectious complications and their relation to treatment duration in catheter-related Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2001;20(6):380–384.
    1. Raad II, Sabbagh MF. Optimal duration of therapy for catheter-related Staphylococcus aureus bacteremia: a study of 55 cases and review. Clin Infect Dis. 1992;14(1):75–82.
    1. Malanoski GJ, Samore MH, Pefanis A, Karchmer AW. Staphylococcus aureus catheter-associated bacteremia. Minimal effective therapy and unusual infectious complications associated with arterial sheath catheters. Arch Intern Med. 1995;155(11):1161–1166.
    1. Jernigan JA, Farr BM. Short-course therapy of catheter-related Staphylococcus aureus bacteremia: a meta-analysis. Ann Intern Med. 1993;119(4):304–311.
    1. Raad II, Bodey GP. Infectious complications of indwelling vascular catheters. Clin Infect Dis. 1992;15(2):197–208.
    1. Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother. 2009;53(10):4069–4079.
    1. Yoon YK, Park DW, Sohn JW, Kim HY, Kim Y-S, Lee C-S, et al. Multicenter prospective observational study of the comparative efficacy and safety of vancomycin versus teicoplanin in patients with health care-associated methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2014;58(1):317–324.
    1. Rodríguez-Aranda A, Daskalaki M, Villar J, Sanz F, Otero JR, Chaves F. Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis. 2009;63(4):398–402.
    1. Moise PA, Sakoulas G, Forrest A, Schentag JJ. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007;51(7):2582–2586.
    1. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398–2402.
    1. Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis. 2012;54(1):51–58.
    1. Stryjewski ME, Szczech LA, Benjamin DK, Inrig JK, Kanafani ZA, Engemann JJ, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44(2):190–196.
    1. Kim S-H, Kim K-H, Kim H-B, Kim N-J, Kim E-C, Oh M, et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2008;52(1):192–197.
    1. Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11:279.
    1. McDanel JS, Perencevich EN, Diekema DJ, Herwaldt LA, Smith TC, Chrischilles EA, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis. 2015;61(3):361–367.
    1. Leonard SN, Rybak MJ. Evaluation of vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus and heterogeneously vancomycin-intermediate S. aureus in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. J Antimicrob Chemother. 2009;63(1):155–160.
    1. Marco F, de la Mària CG, Armero Y, Amat E, Soy D, Moreno A, et al. Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52(7):2538–2543.
    1. Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–665.
    1. Gasch O, Camoez M, Dominguez MA, Padilla B, Pintado V, Almirante B, et al. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013;19(11):1049–1057.
    1. Chaftari A-M, Hachem R, Mulanovich V, Chemaly RF, Adachi J, Jacobson K, et al. Efficacy and safety of daptomycin in the treatment of Gram-positive catheter-related bloodstream infections in cancer patients. Int J Antimicrob Agents. 2010;36(2):182–186.
    1. Wilcox MH, Tack KJ, Bouza E, Herr DL, Ruf BR, Ijzerman MM, et al. Complicated skin and skin-structure infections and catheter-related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis. 2009;48(2):203–212.
    1. Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56(5):923–929.
    1. Crowley AL, Peterson GE, Benjamin DK, Rimmer SH, Todd C, Cabell CH, et al. Venous thrombosis in patients with short- and long-term central venous catheter-associated Staphylococcus aureus bacteremia. Crit Care Med. 2008;36(2):385–390.
    1. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2008;133(6 Suppl):454S–545S.
    1. Jones MA, Lee DY, Segall JA, Landry GJ, Liem TK, Mitchell EL, et al. Characterizing resolution of catheter-associated upper extremity deep venous thrombosis. J Vasc Surg. 2010;51(1):108–113.
    1. Falagas ME, Vardakas KZ, Athanasiou S. Intravenous heparin in combination with antibiotics for the treatment of deep vein septic thrombophlebitis: a systematic review. Eur J Pharmacol. 2007;557(2–3):93–98.
    1. Verghese A, Widrich WC, Arbeit RD. Central venous septic thrombophlebitis–the role of medical therapy. Medicine (Baltimore). 1985;64(6):394–400.
    1. Malinoski DJ, Ewing T, Patel MS, Nguyen D, Le T, Cui E, et al. The natural history of upper extremity deep venous thromboses in critically ill surgical and trauma patients: what is the role of anticoagulation? J Trauma. 2011;71(2):316–321.
    1. Visscher M, deCastro MV, Combs L, Perkins L, Winer J, Schwegman N, et al. Effect of chlorhexidine gluconate on the skin integrity at PICC line sites. J Perinatol. 2009;29(12):802–807.
    1. Loewenthal M, Dobson P, Boyle M. Chlorhexidine 2% and choice of transparent dressing increase skin reactions at central venous catheter insertion sites. Am J Infect Control. 2016;44(12):1712–1714.
    1. Breschan C, Platzer M, Jost R, Stettner H, Beyer A-S, Feigl G, et al. Consecutive, prospective case series of a new method for ultrasound-guided supraclavicular approach to the brachiocephalic vein in children. Br J Anaesth. 2011;106(5):732–737.
    1. Breschan C, Platzer M, Jost R, Stettner H, Feigl G, Likar R. Ultrasound-guided supraclavicular cannulation of the brachiocephalic vein in infants: a retrospective analysis of a case series. Paediatr Anaesth. 2012;22(11):1062–1067.
    1. Nardi N, Wodey E, Laviolle B, De La Brière F, Delahaye S, Engrand C, et al. Effectiveness and complications of ultrasound-guided subclavian vein cannulation in children and neonates. Anaesth Crit Care Pain Med. 2016;35(3):209–213.
    1. Camkiran Firat A, Zeyneloglu P, Ozkan M, Pirat A. A randomized controlled comparison of the internal jugular vein and the subclavian vein as access sites for central venous catheterization in pediatric cardiac surgery. Pediatr Crit Care Med. 2016;17(9):e413–e419.
    1. Karapinar B, Cura A. Complications of central venous catheterization in critically ill children. Pediatr Int. 2007;49(5):593–599.
    1. Habas F, Baleine J, Milési C, Combes C, Didelot M-N, Romano-Bertrand S, et al. Supraclavicular catheterization of the brachiocephalic vein: a way to prevent or reduce catheter maintenance-related complications in children. Eur J Pediatr. 2018;177(3):451–459.
    1. Lu W-H, Yao M-L, Hsieh K-S, Chiu P-C, Chen Y-Y, Lin C-C, et al. Supraclavicular versus infraclavicular subclavian vein catheterization in infants. J Chin Med Assoc JCMA. 2006;69(4):153–156.
    1. Byon H-J, Lee G-W, Lee J-H, Park Y-H, Kim H-S, Kim C-S, et al. Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children’a randomized trial. Br J Anaesth. 2013;111(5):788–792.
    1. Casado-Flores J, Barja J, Martino R, Serrano A, Valdivielso A. Complications of central venous catheterization in critically ill children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2001;2(1):57–62.
    1. Gray BW, Gonzalez R, Warrier KS, Stephens LA, Drongowski RA, Pipe SW, et al. Characterization of central venous catheter-associated deep venous thrombosis in infants. J Pediatr Surg. 2012;47(6):1159–1166.
    1. Chauhan S, Saxena N, Mehrotra S, Rao BH, Sahu M. Femoral artery pressures are more reliable than radial artery pressures on initiation of cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2000;14(3):274–276.
    1. Cho HJ, Lee SH, Jeong IS, Yoon NS, Ma JS, Ahn BH. Differences in perioperative femoral and radial arterial blood pressure in neonates and infants undergoing cardiac surgery requiring cardiopulmonary bypass. J Pediatr (Rio J). 2018;94(1):76–81.
    1. Shin YH, Kim HY, Kim YR, Yoon JS, Ko JS, Gwak MS, et al. The comparison of femoral and radial arterial blood pressures during pediatric liver transplantation. Transplant Proc. 2013;45(5):1924–1927.
    1. Cetin S, Pirat A, Kundakci A, Camkiran A, Zeyneloglu P, Ozkan M, et al. Radial mean arterial pressure reliably reflects femoral mean arterial pressure in uncomplicated pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(1):76–83.
    1. Brotschi B, Hug MI, Latal B, Neuhaus D, Buerki C, Kroiss S, et al. Incidence and predictors of indwelling arterial catheter-related thrombosis in children: arterial thrombosis in children. J Thromb Haemost. 2011;9(6):1157–1162.
    1. Zanolla GR, Baldisserotto M, Piva J. How useful is ultrasound guidance for internal jugular venous access in children? J Pediatr Surg. 2018;53(4):789–793.
    1. Oulego-Erroz I, Muñoz-Lozón A, Alonso-Quintela P, Rodríguez-Nuñez A. Comparison of ultrasound guided brachiocephalic and internal jugular vein cannulation in critically ill children. J Crit Care. 2016;35:133–137.
    1. Leyvi G, Taylor DG, Reith E, Wasnick JD. Utility of ultrasound-guided central venous cannulation in pediatric surgical patients: a clinical series. Paediatr Anaesth. 2005;15(11):953–958.
    1. RECANVA collaborative study. Oulego-Erroz I, González-Cortes R, García-Soler P, Balaguer-Gargallo M, Frías-Pérez M, et al. Ultrasound-guided or landmark techniques for central venous catheter placement in critically ill children. Intensive Care Med. 2018;44(1):61–72.
    1. Lau CSM, Chamberlain RS. Ultrasound-guided central venous catheter placement increases success rates in pediatric patients: a meta-analysis. Pediatr Res. 2016;80(2):178–184.
    1. Froehlich CD, Rigby MR, Rosenberg ES, Li R, Roerig PLJ, Easley KA, et al. Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit*. Crit Care Med. 2009;37(3):1090–1096.
    1. Anantasit N, Cheeptinnakorntaworn P, Khositseth A, Lertbunrian R, Chantra M. Ultrasound versus traditional palpation to guide radial artery cannulation in critically ill children: a randomized trial. J Ultrasound Med. 2017;36(12):2495–2501.
    1. Aouad-Maroun M, Raphael CK, Sayyid SK, Farah F, Akl EA. Ultrasound-guided arterial cannulation for paediatrics. Cochrane Database Syst Rev. 2016;9:CD011364.
    1. Siddik-Sayyid SM, Aouad MT, Ibrahim MH, Taha SK, Nawfal MF, Tfaili YJ, et al. Femoral arterial cannulation performed by residents: a comparison between ultrasound-guided and palpation technique in infants and children undergoing cardiac surgery. Pediatr Anesth. 2016;26(8):823–830.
    1. Gilbert RE, Mok Q, Dwan K, Harron K, Moitt T, Millar M, et al. Impregnated central venous catheters for prevention of bloodstream infection in children (the CATCH trial): a randomised controlled trial. Lancet. 2016;387(10029):1732–1742.
    1. Weber JM, Sheridan RL, Fagan S, Ryan CM, Pasternack MS, Tompkins RG. Incidence of catheter-associated bloodstream infection after introduction of minocycline and rifampin antimicrobial-coated catheters in a pediatric burn population. J Burn Care Res. 2012;33(4):539–543.
    1. Chelliah A, Heydon KH, Zaoutis TE, Rettig SL, Dominguez TE, Lin R, et al. Observational trial of antibiotic-coated central venous catheters in critically ill pediatric patients. Pediatr Infect Dis J. 2007;26(9):816–820.
    1. Cox EG, Knoderer CA, Jennings A, Brown JW, Rodefeld MD, Walker SG, et al. A randomized, controlled trial of catheter-related infectious event rates using antibiotic-impregnated catheters versus conventional catheters in pediatric cardiovascular surgery patients. J Pediatr Infect Dis Soc. 2013;2(1):67–70.
    1. Biasucci DG, Pittiruti M, Taddei A, Picconi E, Pizza A, Celentano D, et al. Targeting zero catheter-related bloodstream infections in pediatric intensive care unit: a retrospective matched case-control study. J Vasc Access. 2018;19(2):119–124.
    1. Düzkaya DS, Sahiner NC, Uysal G, Yakut T, Çitak A. Chlorhexidine-impregnated dressings and prevention of catheter-associated bloodstream infections in a pediatric intensive care unit. Crit Care Nurse. 2016;36(6):e1–e7.
    1. Gerçeker GÖ, Yardımcı F, Aydınok Y. Randomized controlled trial of care bundles with chlorhexidine dressing and advanced dressings to prevent catheter-related bloodstream infections in pediatric hematology-oncology patients. Eur J Oncol Nurs. 2017;28:14–20.
    1. Garland JS, Alex CP, Mueller CD, Otten D, Shivpuri C, Harris MC, et al. A randomized trial comparing povidone-iodine to a chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates. Pediatrics. 2001;107(6):1431–1436.
    1. Hatler C, Buckwald L, Salas-Allison Z, Murphy-Taylor C. Evaluating central venous catheter care in a pediatric intensive care unit. Am J Crit Care. 2009;18(6):514–520.
    1. Onder AM, Chandar J, Coakley S, Francoeur D, Abitbol C, Zilleruelo G. Controlling exit site infections: does it decrease the incidence of catheter-related bacteremia in children on chronic hemodialysis? Hemodial Int Int Symp Home Hemodial. 2009;13(1):11–18.

Source: PubMed

3
Suscribir