Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial

R E Frye, J Slattery, L Delhey, B Furgerson, T Strickland, M Tippett, A Sailey, R Wynne, S Rose, S Melnyk, S Jill James, J M Sequeira, E V Quadros, R E Frye, J Slattery, L Delhey, B Furgerson, T Strickland, M Tippett, A Sailey, R Wynne, S Rose, S Melnyk, S Jill James, J M Sequeira, E V Quadros

Abstract

We sought to determine whether high-dose folinic acid improves verbal communication in children with non-syndromic autism spectrum disorder (ASD) and language impairment in a double-blind placebo control setting. Forty-eight children (mean age 7 years 4 months; 82% male) with ASD and language impairment were randomized to receive 12 weeks of high-dose folinic acid (2 mg kg-1 per day, maximum 50 mg per day; n=23) or placebo (n=25). Children were subtyped by glutathione and folate receptor-α autoantibody (FRAA) status. Improvement in verbal communication, as measured by a ability-appropriate standardized instrument, was significantly greater in participants receiving folinic acid as compared with those receiving placebo, resulting in an effect of 5.7 (1.0,10.4) standardized points with a medium-to-large effect size (Cohen's d=0.70). FRAA status was predictive of response to treatment. For FRAA-positive participants, improvement in verbal communication was significantly greater in those receiving folinic acid as compared with those receiving placebo, resulting in an effect of 7.3 (1.4,13.2) standardized points with a large effect size (Cohen's d=0.91), indicating that folinic acid treatment may be more efficacious in children with ASD who are FRAA positive. Improvements in subscales of the Vineland Adaptive Behavior Scale, the Aberrant Behavior Checklist, the Autism Symptom Questionnaire and the Behavioral Assessment System for Children were significantly greater in the folinic acid group as compared with the placebo group. There was no significant difference in adverse effects between treatment groups. Thus, in this small trial of children with non-syndromic ASD and language impairment, treatment with high-dose folinic acid for 12 weeks resulted in improvement in verbal communication as compared with placebo, particularly in those participants who were positive for FRAAs.

Trial registration: ClinicalTrials.gov NCT01602016.

Conflict of interest statement

EVQ and JMS are inventors in a patent for the detecting of the autoantibodies described in this study (US patent 7,846,672 B2) issued to the Research Foundation of the State University of New York. REF and EVQ are members of the Scientific Advisory Board to Illiad Neurosciences, Inc. The remaining authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of participants through the trial.

References

    1. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Rep 2015; 1–20.
    1. Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012; 17: 389–401.
    1. Rossignol DA, Frye RE. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 2014; 5: 150.
    1. Frye RE, Rossignol DA. Identification and treatment of pathophysiological comorbidities of autism spectrum disorder to achieve optimal outcomes. Clin Med Insights Pediatr 2016; 10: 43–56.
    1. Frye RE, Rossignol DA. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr 2014; 2: 66.
    1. Vahabzadeh A, McDougle CJ. Maternal folic acid supplementation and risk of autism. JAMA 2013; 309: 2208.
    1. Frye RE, James SJ. Metabolic pathology of autism in relation to redox metabolism. Biomark Med 2014; 8: 321–330.
    1. Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 2013; 309: 570–577.
    1. Steenweg-de Graaff J, Ghassabian A, Jaddoe VW, Tiemeier H, Roza SJ. Folate concentrations during pregnancy and autistic traits in the offspring. The Generation R Study. Eur J Publ Health 2015; 25: 431–433.
    1. Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 2012; 96: 80–89.
    1. Ramaekers VT, Rothenberg SP, Sequeira JM, Opladen T, Blau N, Quadros EV et al. Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N Engl J Med 2005; 352: 1985–1991.
    1. Ramaekers VT, Hausler M, Opladen T, Heimann G, Blau N. Psychomotor retardation, spastic paraplegia, cerebellar ataxia and dyskinesia associated with low 5-methyltetrahydrofolate in cerebrospinal fluid: a novel neurometabolic condition responding to folinic acid substitution. Neuropediatrics 2002; 33: 301–308.
    1. Moretti P, Peters SU, Del Gaudio D, Sahoo T, Hyland K, Bottiglieri T et al. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord 2008; 38: 1170–1177.
    1. Moretti P, Sahoo T, Hyland K, Bottiglieri T, Peters S, del Gaudio D et al. Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 2005; 64: 1088–1090.
    1. Ramaekers VT, Blau N, Sequeira JM, Nassogne MC, Quadros EV. Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits. Neuropediatrics 2007; 38: 276–281.
    1. Ramaekers VT, Hansen SI, Holm J, Opladen T, Senderek J, Hausler M et al. Reduced folate transport to the CNS in female Rett patients. Neurology 2003; 61: 506–515.
    1. Ramaekers VT, Sequeira JM, Artuch R, Blau N, Temudo T, Ormazabal A et al. Folate receptor autoantibodies and spinal fluid 5-methyltetrahydrofolate deficiency in Rett syndrome. Neuropediatrics 2007; 38: 179–183.
    1. Perez-Duenas B, Ormazabal A, Toma C, Torrico B, Cormand B, Serrano M et al. Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Archiv Neurol 2011; 68: 615–621.
    1. Frye RE. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav 2015; 47: 147–157.
    1. Garcia-Cazorla A, Quadros EV, Nascimento A, Garcia-Silva MT, Briones P, Montoya J et al. Mitochondrial diseases associated with cerebral folate deficiency. Neurology 2008; 70: 1360–1362.
    1. Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab 2010; 99: 58–61.
    1. Serrano M, Garcia-Silva MT, Martin-Hernandez E, O'Callaghan Mdel M, Quijada P, Martinez-Aragon A et al. Kearns-Sayre syndrome: cerebral folate deficiency, MRI findings and new cerebrospinal fluid biochemical features. Mitochondrion 2010; 10: 429–432.
    1. Grapp M, Just IA, Linnankivi T, Wolf P, Lucke T, Hausler M et al. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 2012; 135(Pt 7): 2022–2031.
    1. Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol Psychiatry 2013; 18: 369–381.
    1. Ramaekers VT, Sequeira JM, Blau N, Quadros EV. A milk-free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome. Dev Med Child Neurol 2008; 50: 346–352.
    1. Sequeira JM, Ramaekers VT, Quadros EV. The diagnostic utility of folate receptor autoantibodies in blood. Clin Chem Lab Med 2013; 51: 545–554.
    1. Desai A, Sequeira JM, Quadros EV. The metabolic basis for developmental disorders due to defective folate transport. Biochimie 2016; 126: 31–42.
    1. Ramaekers VT, Quadros EV, Sequeira JM. Role of folate receptor autoantibodies in infantile autism. Mol Psychiatry 2013; 18: 270–271.
    1. Sequeira JM, Desai A, Berrocal-Zaragoza MI, Murphy MM, Fernandez-Ballart JD, Quadros EV. Exposure to folate receptor alpha antibodies during gestation and weaning leads to severe behavioral deficits in rats: a pilot study. PLoS One 2016; 11: e0152249.
    1. Shoffner J, Trommer B, Thurm A, Farmer C, Langley WA III, Soskey L et al. CSF concentrations of 5-methyltetrahydrofolate in a cohort of young children with autism. Neurology 2016; 86: 2258–2263.
    1. Tilford JM, Payakachat N, Kovacs E, Pyne JM, Brouwer W, Nick TG et al. Preference-based health-related quality-of-life outcomes in children with autism spectrum disorders: a comparison of generic instruments. Pharmacoeconomics 2012; 30: 661–679.
    1. Mukaddes NM, Tutkunkardas MD, Sari O, Aydin A, Kozanoglu P. Characteristics of children who lost the diagnosis of autism: a sample from Istanbul, Turkey. Autism Res Treat 2014; 2014: 472120.
    1. Tager-Flusberg H, Rogers S, Cooper J, Landa R, Lord C, Paul R et al. Defining spoken language benchmarks and selecting measures of expressive language development for young children with autism spectrum disorders. J Speech Lang Hear Res 2009; 52: 643–652.
    1. Luyster R, Qiu S, Lopez K, Lord C. Predicting outcomes of children referred for autism using the MacArthur-Bates Communicative Development Inventory. J Speech Lang Hear Res 2007; 50: 667–681.
    1. Condouris K, Meyer E, Tager-Flusberg H. The relationship between standardized measures of language and measures of spontaneous speech in children with autism. Am J Speech Lang Pathol 2003; 12: 349–358.
    1. Edgar JC, Khan SY, Blaskey L, Chow VY, Rey M, Gaetz W et al. Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. J Autism Dev Disord 2015; 45: 395–405.
    1. Verly M, Verhoeven J, Zink I, Mantini D, Van Oudenhove L, Lagae L et al. Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 2014; 35: 3602–3615.
    1. Volden J, Smith IM, Szatmari P, Bryson S, Fombonne E, Mirenda P et al. Using the preschool language scale, fourth edition to characterize language in preschoolers with autism spectrum disorders. Am J Speech Lang Pathol 2011; 20: 200–208.
    1. Schreibman L, Stahmer AC. A randomized trial comparison of the effects of verbal and pictorial naturalistic communication strategies on spoken language for young children with autism. J Autism Dev Disord 2014; 44: 1244–1251.
    1. Wetherby AM, Guthrie W, Woods J, Schatschneider C, Holland RD, Morgan L et al. Parent-implemented social intervention for toddlers with autism: an RCT. Pediatrics 2014; 134: 1084–1093.
    1. Butter E, Mulick J. The Ohio Autism Clinical Impressions Scale (OACIS). Institute CsR: Columbus, OH, 2006.
    1. Psychopharmacology TORUoPOSU Autism Rating Scale. OSU Research Unit on Pediatric Psychopharmacology: Columbus, OH, 2005.
    1. Choque Olsson N, Bolte S. Brief report: "Quick and (not so) dirty" assessment of change in autism: cross-cultural reliability of the developmental disabilities CGAS and the OSU autism CGI. J Autism Dev Disord 2014; 44: 1773–1778.
    1. Wink LK, Early M, Schaefer T, Pottenger A, Horn P, McDougle CJ et al. Body mass index change in autism spectrum disorders: comparison of treatment with risperidone and aripiprazole. J Child Adolesc Psychopharmacol 2014; 24: 78–82.
    1. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA 2014; 111: 15550–15555.
    1. Arnold LE, Aman MG, Hollway J, Hurt E, Bates B, Li X et al. Placebo-controlled pilot trial of mecamylamine for treatment of autism spectrum disorders. J Child Adolesc Psychopharmacol 2012; 22: 198–205.
    1. Frye RE, DeLatorre R, Taylor HB, Slattery J, Melnyk S, Chowdhury N et al. Metabolic effects of sapropterin treatment in autism spectrum disorder: a preliminary study. Transl Psychiatry 2013; 3: e237.
    1. Frye RE, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O et al. Effectiveness of methylcobalamin and folinic acid treatment on adaptive behavior in children with autistic disorder is related to glutathione redox status. Autism Res Treat 2013; 2013: 609705.
    1. Kaat AJ, Lecavalier L, Aman MG. Validity of the aberrant behavior checklist in children with autism spectrum disorder. J Autism Dev Disord 2014; 44: 1103–1116.
    1. Turygin NC, Matson JL, Adams H, Belva B. The effect of DSM-5 criteria on externalizing, internalizing, behavioral and adaptive symptoms in children diagnosed with autism. Dev Neurorehabil 2013; 16: 277–282.
    1. Kanne SM, Mazurek MO, Sikora D, Bellando J, Branum-Martin L, Handen B et al. The Autism Impact Measure (AIM): initial development of a new tool for treatment outcome measurement. J Autism Dev Disord 2014; 44: 168–179.
    1. Frye RE, Tippett M, Delhey L, Slattery J. Test-retest reliability and validity of the Autism Symptoms Questionnaire. N Am J Med Sci 2015; 8: 149–153.
    1. Detry MA, Lewis RJ. The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA 2014; 312: 85–86.
    1. White IR, Carpenter J, Horton NJ. Including all individuals is not enough: lessons for intention-to-treat analysis. Clin Trials 2012; 9: 396–407.
    1. Yuan YC. Multiple Imputation for Missing Data: Concepts and New Development (SAS Version 9.0). SAS Institute Inc.: Rockville, MD, 2011.
    1. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007; 8: 206–213.
    1. Matts JP, Launer CA, Nelson ET, Miller C, Dain B. A graphical assessment of the potential impact of losses to follow-up on the validity of study results. The Terry Beirn Community Programs for Clinical Research on AIDS. Stat Med 1997; 16: 1943–1954.
    1. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 1995; 57: 289–300.
    1. Boarman DM, Baram J, Allegra CJ. Mechanism of leucovorin reversal of methotrexate cytotoxicity in human MCF-7 breast cancer cells. Biochem Pharmacol 1990; 40: 2651–2660.
    1. Frye RE, Delhey L, Slattery J, Tippett M, Wynne R, Rose S et al. Blocking and binding folate receptor alpha autoantibodies identify novel autism spectrum disorder subgroups. Front Neurosci 2016; 10: 80.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222–227.
    1. Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis 2015; 26: 26878.
    1. Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 2009; 302: 1765–1773.
    1. Bobo WV, Cooper WO, Stein CM, Olfson M, Graham D, Daugherty J et al. Antipsychotics and the risk of type 2 diabetes mellitus in children and youth. JAMA Psychiatry 2013; 70: 1067–1075.
    1. Klaiman C, Huffman L, Masaki L, Elliott GR. Tetrahydrobiopterin as a treatment for autism spectrum disorders: a double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol 2013; 23: 320–328.
    1. Lemonnier E, Degrez C, Phelep M, Tyzio R, Josse F, Grandgeorge M et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012; 2: e202.
    1. Yui K, Sato A, Imataka G. Mitochondrial dysfunction and its relationship with mTOR signaling and oxidative damage in autism spectrum disorders. Mini Rev Med Chem 2015; 15: 373–389.
    1. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014; 83: 1131–1143.
    1. Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 2014; 4: e400.

Source: PubMed

3
Suscribir