Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups

Richard E Frye, Leanna Delhey, John Slattery, Marie Tippett, Rebecca Wynne, Shannon Rose, Stephen G Kahler, Sirish C Bennuri, Stepan Melnyk, Jeffrey M Sequeira, Edward Quadros, Richard E Frye, Leanna Delhey, John Slattery, Marie Tippett, Rebecca Wynne, Shannon Rose, Stephen G Kahler, Sirish C Bennuri, Stepan Melnyk, Jeffrey M Sequeira, Edward Quadros

Abstract

Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments.

Keywords: autism spectrum disorders; folate receptor autoantibody; folinic acid; glutathione; redox metabolism.

Figures

Figure 1
Figure 1
(A) Children with Autism Spectrum Disorder who are positive for the binding Folate Receptor Alpha Autoantibody have higher serum B12 concentrations than children negative for the binding Folate Receptor Alpha Autoantibody; (B) Serum Folate concentration does not differ across Folate Receptor Alpha Autoantibody status in children with Autism Spectrum Disorder.
Figure 2
Figure 2
Children with Autism Spectrum Disorder who are positive for the blocking Folate Receptor Alpha Autoantibody have more favorable total and free glutathione redox ratios (A,B) and marker of inflammation (C) as compared to those negative for the blocking FRAA. (D) Methylation metabolism was not different across Folate Receptor Alpha Autoantibody status.
Figure 3
Figure 3
Children with Autism Spectrum Disorder who are positive for the blocking Folate Receptor Alpha Autoantibody have more favorable (B) communication on the Vineland Adaptive Behavior Scale, (I) Stereotyped behavior on the Aberrant Behavior Checklist (ABC) and (Q) Mannerisms on the Social Responsiveness Scale (SRS) as compared to children negative for the blocking Folate Receptor Alpha Autoantibody. (R) In addition, children positive for the blocking FRAA have better total Social Responsiveness Scale score than those positive for the binding Folate Receptor Alpha Autoantibody. This figure depicts behavioral and Cognitive differences across Folate Receptor Alpha Autoantibody (FRAA) groups including difference in (A) Language, (B–F) Vineland Adaptive Behavioral Scale, (G–L) ABC, and (M–R) SRS.

References

    1. Adams M., Lucock M., Stuart J., Fardell S., Baker K., Ng X. (2007). Preliminary evidence for involvement of the folate gene polymorphism 19bp deletion-DHFR in occurrence of autism. Neurosci. Lett. 422, 24–29. 10.1016/j.neulet.2007.05.025
    1. Aman M. G., Singh N. N., Stewart A. W., Field C. J. (1985). The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am. J. Ment. Defic. 89, 485–491.
    1. Berrocal-Zaragoza M. I., Fernandez-Ballart J. D., Murphy M. M., Cavalle-Busquets P., Sequeira J. M., Quadros E. V. (2009). Association between blocking folate receptor autoantibodies and subfertility. Fertil. Steril. 91, 1518–1521. 10.1016/j.fertnstert.2008.08.104
    1. Black M. M. (2008). Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr. Bull. 29, S126–S131. 10.1177/15648265080292S117
    1. Condouris K., Meyer E., Tager-Flusberg H. (2003). The relationship between standardized measures of language and measures of spontaneous speech in children with autism. Am. J. Speech Lang. Pathol. 12, 349–358. 10.1044/1058-0360(2003/080)
    1. Constantino J. N. (2002). The Social Responsiveness Scale. Los Angeles, CA: Western Psychological Services.
    1. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control Prevention (CDC) (2014). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR. Surveill. Summ. 63, 1–21.
    1. Edgar J. C., Khan S. Y., Blaskey L., Chow V. Y., Rey M., Gaetz W., et al. . (2015). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. J. Autism Dev. Disord. 45, 395–405. 10.1007/s10803-013-1904-x
    1. Frustaci A., Neri M., Cesario A., Adams J. B., Domenici E., Dalla Bernardina B., et al. . (2012). Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic. Biol. Med. 52, 2128–2141. 10.1016/j.freeradbiomed.2012.03.011
    1. Frye R. E., James S. J. (2014). Metabolic pathology of autism in relation to redox metabolism. Biomark. Med. 8, 321–330. 10.2217/bmm.13.158
    1. Frye R. E., Melnyk S., Fuchs G., Reid T., Jernigan S., Pavliv O., et al. . (2013a). Effectiveness of methylcobalamin and folinic Acid treatment on adaptive behavior in children with autistic disorder is related to glutathione redox status. Autism Res. Treat. 2013:609705. 10.1155/2013/609705
    1. Frye R. E., Naviaux R. K. (2011). Autistic disorder with complex IV overactivity: a new mitochondrial syndrome. J. Pediatr. Neurol. 9, 427–434. 10.3233/JPN-2011-0507
    1. Frye R. E., Rossignol D. A. (2011). Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr. Res. 69, 41R–47R. 10.1203/PDR.0b013e318212f16b
    1. Frye R. E., Sequeira J. M., Quadros E. V., James S. J., Rossignol D. A. (2013b). Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 18, 369–381. 10.1038/mp.2011.175
    1. Frye R. E., Slattery J., Macfabe D. F., Allen-Vercoe E., Parker W., Rodakis J., et al. . (2015). Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb. Ecol. Health Dis. 26:26878. 10.3402/mehd.v26.26878
    1. Garcia-Cazorla A., Quadros E. V., Nascimento A., Garcia-Silva M. T., Briones P., Montoya J., et al. . (2008). Mitochondrial diseases associated with cerebral folate deficiency. Neurology 70, 1360–1362. 10.1212/01.wnl.0000309223.98616.e4
    1. Greenblatt J. M., Huffman L. C., Reiss A. L. (1994). Folic acid in neurodevelopment and child psychiatry. Prog. Neuropsychopharmacol. Biol. Psychiatry 18, 647–660. 10.1016/0278-5846(94)90074-4
    1. Hallmayer J., Cleveland S., Torres A., Phillips J., Cohen B., Torigoe T., et al. . (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102. 10.1001/archgenpsychiatry.2011.76
    1. James S. J., Melnyk S., Fuchs G., Reid T., Jernigan S., Pavliv O., et al. . (2009). Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am. J. Clin. Nutr. 89, 425–430. 10.3945/ajcn.2008.26615
    1. James S. J., Melnyk S., Jernigan S., Cleves M. A., Halsted C. H., Wong D. H., et al. . (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 947–956. 10.1002/ajmg.b.30366
    1. Kaat A. J., Lecavalier L., Aman M. G. (2014). Validity of the aberrant behavior checklist in children with autism spectrum disorder. J. Autism Dev. Disord. 44, 1103–1116. 10.1007/s10803-013-1970-0
    1. Matson J. L., Jang J. (2014). Treating aggression in persons with autism spectrum disorders: a review. Res. Dev. Disabil. 35, 3386–3391. 10.1016/j.ridd.2014.08.025
    1. Melnyk S., Pogribna M., Pogribny I., Hine R. J., James S. J. (1999). A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection. J. Nutr. Biochem. 10, 490–497. 10.1016/S0955-2863(99)00033-9
    1. Molloy A. M., Quadros E. V., Sequeira J. M., Troendle J. F., Scott J. M., Kirke P. N., et al. . (2009). Lack of association between folate-receptor autoantibodies and neural-tube defects. N. Engl. J. Med. 361, 152–160. 10.1056/NEJMoa0803783
    1. Moretti P., Sahoo T., Hyland K., Bottiglieri T., Peters S., Del Gaudio D., et al. . (2005). Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 64, 1088–1090. 10.1212/01.WNL.0000154641.08211.B7
    1. Murray M. J., Mayes S. D., Smith L. A. (2011). Brief report: excellent agreement between two brief autism scales (Checklist for Autism Spectrum Disorder and Social Responsiveness Scale) completed independently by parents and the Autism Diagnostic Interview-Revised. J. Autism Dev. Disord. 41, 1586–1590. 10.1007/s10803-011-1178-0
    1. Ramaekers V., Sequeira J. M., Quadros E. V. (2013a). Clinical recognition and aspects of the cerebral folate deficiency syndromes. Clin. Chem. Lab. Med. 51, 497–511. 10.1515/cclm-2012-0543
    1. Ramaekers V. T., Blau N. (2004). Cerebral folate deficiency. Dev. Med. Child Neurol. 46, 843–851. 10.1111/j.1469-8749.2004.tb00451.x
    1. Ramaekers V. T., Blau N., Sequeira J. M., Nassogne M. C., Quadros E. V. (2007a). Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits. Neuropediatrics 38, 276–281. 10.1055/s-2008-1065354
    1. Ramaekers V. T., Hausler M., Opladen T., Heimann G., Blau N. (2002). Psychomotor retardation, spastic paraplegia, cerebellar ataxia and dyskinesia associated with low 5-methyltetrahydrofolate in cerebrospinal fluid: a novel neurometabolic condition responding to folinic acid substitution. Neuropediatrics 33, 301–308. 10.1055/s-2002-37082
    1. Ramaekers V. T., Quadros E. V., Sequeira J. M. (2013b). Role of folate receptor autoantibodies in infantile autism. Mol. Psychiatry 18, 270–271. 10.1038/mp.2012.22
    1. Ramaekers V. T., Rothenberg S. P., Sequeira J. M., Opladen T., Blau N., Quadros E. V., et al. . (2005). Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N. Engl. J. Med. 352, 1985–1991. 10.1056/NEJMoa043160
    1. Ramaekers V. T., Thony B., Sequeira J. M., Ansseau M., Philippe P., Boemer F., et al. . (2014). Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol. Genet. Metab. 113, 307–314. 10.1016/j.ymgme.2014.10.002
    1. Ramaekers V. T., Weis J., Sequeira J. M., Quadros E. V., Blau N. (2007b). Mitochondrial complex I encephalomyopathy and cerebral 5-methyltetrahydrofolate deficiency. Neuropediatrics 38, 184–187. 10.1055/s-2007-991150
    1. Rose S., Melnyk S., Pavliv O., Bai S., Nick T. G., Frye R. E., et al. . (2012). Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2, e134. 10.1038/tp.2012.61
    1. Rossignol D. A., Frye R. E. (2012a). Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol. Psychiatry 17, 290–314. 10.1038/mp.2010.136
    1. Rossignol D. A., Frye R. E. (2012b). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 17, 389–401. 10.1038/mp.2011.165
    1. Rossignol D. A., Frye R. E. (2014). Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 5:150. 10.3389/fphys.2014.00150
    1. Sandin S., Lichtenstein P., Kuja-Halkola R., Larsson H., Hultman C. M., Reichenberg A. (2014). The familial risk of autism. JAMA 311, 1770–1777. 10.1001/jama.2014.4144
    1. Schmidt R. J., Tancredi D. J., Ozonoff S., Hansen R. L., Hartiala J., Allayee H., et al. . (2012). Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 96, 80–89. 10.3945/ajcn.110.004416
    1. Semel E., Wiig E. H., Secord W. A. (2003). Clinical Evaluation of Language Fundamentals, 4th Edn, (CELF-4). Toronto, ON: The Psychological Corporation/A Harcourt Assessment Company.
    1. Sparrow S., Cicchetti D., Balla D. (2005). Vineland Adaptive Behavior Scales, 2nd Edn. Minneapolis, MN: Pearson Assessment.
    1. Suren P., Roth C., Bresnahan M., Haugen M., Hornig M., Hirtz D., et al. . (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309, 570–577. 10.1001/jama.2012.155925
    1. Verly M., Verhoeven J., Zink I., Mantini D., Van Oudenhove L., Lagae L., et al. . (2014). Structural and functional underconnectivity as a negative predictor for language in autism. Hum. Brain Mapp. 35, 3602–3615. 10.1002/hbm.22424
    1. Volden J., Smith I. M., Szatmari P., Bryson S., Fombonne E., Mirenda P., et al. . (2011). Using the preschool language scale, fourth edition to characterize language in preschoolers with autism spectrum disorders. Am. J. Speech Lang. Pathol. 20, 200–208. 10.1044/1058-0360(2011/10-0035)
    1. Wiig E. H., Secord W. A., Semel E. (2004). Clinical Evaluation of Language Fundamentals—Preschool, 2nd Edn. (CELF Preschool-2). Toronto, ON: The Psychological Corporation/A Harcourt Assessment Company.
    1. Zimmerman I. L., Steiner V. G., E. P. R. (2002). Preschool Language Scale, 4th Edn. San Antonio, TX: The Psychological Corporation.

Source: PubMed

3
Suscribir