Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease

Daniel M Johnstone, Cécile Moro, Jonathan Stone, Alim-Louis Benabid, John Mitrofanis, Daniel M Johnstone, Cécile Moro, Jonathan Stone, Alim-Louis Benabid, John Mitrofanis

Abstract

Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600-1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients.

Keywords: amyloid plaques; disease-modifying; neuroprotection; photobiomodulation; tau protein.

Figures

Figure 1
Figure 1
The major brain sites of pathology in Alzheimer's and Parkinson's patients. For Alzheimer's disease, green shade indicates major regions of cell loss and β-amyloid plaques and tau pathology, while in Parkinson's disease, red shade indicates sites of major cell loss and α-synuclein pathology.
Figure 2
Figure 2
The putative NIr protective mechanisms in the brain. (A) Direct NIr stimulation of the mitochondria of the damaged neurons or endothelial cells. This stimulation would repair the damage leading to neuronal protection. NIr may also stimulate neurogenesis in the hippocampus and/or synaptogenesis in the damaged neurons (B) indirect (remote) stimulation via circulating immune cells and/or bone marrow stem cells leading to neuronal protection. The latter is similar to the so-called “abscopal” effect in the treatment of cancer metastasis. We suggest that the primary mechanism is the direct effect, of neurons and/or of endothelial cells, while the systemic indirect effect forms a secondary supportive mechanism.
Figure 3
Figure 3
Potential NIr applications in Alzheimer's and Parkinson's patients. For effective neuroprotection, NIr could be applied extracranially in Alzheimer's disease (e.g., in the form of a helmet) and intracranially in Parkinson's disease (e.g., in the form of an optical fiber linked to a LED or laser source). NIr would be delivered very close to the diseased cells in the neocortex (for Alzheimer's) and brainstem SNc (for Parkinson's). In Parkinson's patients selected for deep brain stimulation, the NIr optical fiber could be implanted surgically at the same time, for neuroprotection of remaining dopaminergic cells (see text for details).

References

    1. Abdo A., Ersen A., Sahin M. (2013). Near-infrared light penetration profile in the rodent brain. J. Biomed. Opt. 18:075001. 10.1117/1.JBO.18.7.075001
    1. Albarracin R., Natoli R., Rutar M., Valter K., Provis J. (2013). 670 nm light mitigates oxygen-induced degeneration in C57BL/6 J mouse retina. BMC Neurosci. 14:125. 10.1186/1471-2202-14-125
    1. Alzheimer A. (1907). Über eine eigenartige Erkrankung der Hirnr- inde. Allgemeine Zeitschrift Psychiatr. Psych. 146–148.
    1. Alzheimer A. (1911). Über eigenartige Krankheitsfälle des später- en Alters, Zbl. ges. Neurol Psychiat. 4, 356–385. 10.1007/BF02866241
    1. Ando T., Xuan W., Xu T., Dai T., Sharma S. K., Kharkwal G. B., et al. . (2011). Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS ONE 6:e26212. 10.1371/journal.pone.0026212
    1. Barrett D. W., Gonzalez-Lima F. (2013). Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230, 13–23. 10.1016/j.neuroscience.2012.11.016
    1. Begum R., Powner M. B., Hudson N., Hogg C., Jeffery G. (2013). Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE 8:e57828. 10.1371/journal.pone.0057828
    1. Benabid A. L., Chabardes S., Mitrofanis J., Pollak P. (2009). Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol. 8, 67–81. 10.1016/S1474-4422(08)70291-6
    1. Bergman H., Deuschl G. (2002). Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back. Mov. Disord. 17(Suppl. 3), S28–S40. 10.1002/mds.10140
    1. Bezard E., Yue Z., Kirik D., Spillantini M. G. (2013). Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov. Disord. 28, 61–70. 10.1002/mds.25108
    1. Blanco N. J., Maddox W. T., Gonzalez-Lima F. (2015). Improving executive function using transcranial infrared laser stimulation. J. Neuropsychol. 10.1111/jnp.12074. [Epub ahead of print].
    1. Blandini F., Nappi G., Tassorelli C., Martignoni E. (2000). Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog. Neurobiol. 62, 63–88. 10.1016/S0301-0082(99)00067-2
    1. Blesa J., Phani S., Jackson-Lewis V., Przedborski S. (2012). Classic and new animal models of Parkinson's disease. J. Biomed. Biotechnol. 2012:845618. 10.1155/2012/845618
    1. Braak H., Braak E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278. discussion: 278–284. 10.1016/0197-4580(95)00021-6
    1. Braverman B., McCarthy R. J., Ivankovich A. D., Forde D. E., Overfield M., Bapna M. S. (1989). Effect of helium-neon and infrared laser irradiation on wound healing in rabbits. Lasers Surg. Med. 9, 50–58. 10.1002/lsm.1900090111
    1. Brettschneider J., Tredici K. D., Lee V. M.-Y., Trojanowski J. Q. (2015). Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120. 10.1038/nrn3887
    1. Burchman M. (2011). Using photobiomodulation on a severe Parkinson's patient to enable extractions, root canal treatment, and partial denture fabrication. J. Laser Dent. 19, 297–300.
    1. Byrnes K. R., Waynant R. W., Ilev I. K., Wu X., Barna L., Smith K., et al. . (2005). Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg. Med. 36, 171–185. 10.1002/lsm.20143
    1. Carvey P. M., Hendey B., Monahan A. J. (2009). The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314. 10.1111/j.1471-4159.2009.06319.x
    1. Chaturvedi R. K., Beal M. F. (2008). Mitochondrial approaches for neuroprotection. Ann. N.Y. Acad. Sci. 1147, 395–412. 10.1196/annals.1427.027
    1. Chung H., Dai T., Sharma S. K., Huang Y.-Y., Carroll J. D., Hamblin M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40, 516–533. 10.1007/s10439-011-0454-7
    1. Coppedè F., Migliore L. (2015). DNA damage in neurodegenerative diseases. Mutat. Res. 776, 84–97. 10.1016/j.mrfmmm.2014.11.010
    1. Corti O., Brice A. (2013). Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Curr. Opin. Neurobiol. 23, 100–108. 10.1016/j.conb.2012.11.002
    1. Cosgrove J., Alty J. E., Jamieson S. (2015). Cognitive impairment in Parkinson's disease. Postgrad. Med. J. 91, 212–220. 10.1136/postgradmedj-2015-133247
    1. Cullen K. M., Kócsi Z., Stone J. (2005). Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J. Cereb. Blood Flow Metab. 25, 1656–1667. 10.1038/sj.jcbfm.9600155
    1. Cullen K. M., Kócsi Z., Stone J. (2006). Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol. Aging 27, 1786–1796. 10.1016/j.neurobiolaging.2005.10.016
    1. Darlot F., Moro C., El Massri N., Chabrol C., Johnstone D. M., Reinhart F., et al. . (2015). Near-infrared light is neuroprotective in a monkey model of Parkinson's disease. Ann. Neurol. 10.1002/ana.24542. [Epub ahead of print].
    1. De la Torre J. C. (2004). Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3, 184–190. 10.1016/S1474-4422(04)00683-0
    1. Del Tredici K., Braak H. (2013). Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J. Neurol. Neurosurg. Psychiatr. 84, 774–783. 10.1136/jnnp-2011-301817
    1. Desmet K., Buchmann E., Henry M., Wong-Riley M., Eells J., VerHoeve J., et al. (2009). Near-infrared light as a possible treatment option for Parkinson's disease and laser eye injury. Proc. of SPIE 7165, 716503-1–716503-10. 10.1117/12.803964
    1. Desmet K. D., Paz D. A., Corry J. J., Eells J. T., Wong-Riley M. T. T., Henry M. M., et al. . (2006). Clinical and experimental applications of NIR-LED photobiomodulation. Photomed. Laser Surg. 24, 121–128. 10.1089/pho.2006.24.121
    1. DeTaboada L., Ilic S., Leichliter-Martha S., Oron U., Oron A., Streeter J. (2006). Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg. Med. 38, 70–73. 10.1002/lsm.20256
    1. DeTaboada L., Yu J., El-Amouri S., Gattoni-Celli S., Richieri S., McCarthy T., et al. . (2011). Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J. Alzheimers Dis. 23, 521–535. 10.3233/JAD-2010-100894
    1. Durieux J., Wolff S., Dillin A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91. 10.1016/j.cell.2010.12.016
    1. Eells J. T., Wong-Riley M. T. T., VerHoeve J., Henry M., Buchman E. V., Kane M. P., et al. . (2004). Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4, 559–567. 10.1016/j.mito.2004.07.033
    1. El Massri N., Johnstone D. M., Peoples C. L., Moro C., Reinhart F., Torres N., et al. . (2015). The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int. J. Neurosci. 10.3109/00207454.2014.994063
    1. Exner N., Lutz A. K., Haass C., Winklhofer K. F. (2012). Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062. 10.1038/emboj.2012.170
    1. Farfara D., Tuby H., Trudler D., Doron-Mandel E., Maltz L., Vassar R. J., et al. . (2015). Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer's disease. J. Mol. Neurosci. 55, 430–436. 10.1007/s12031-014-0354-z
    1. Farkas E., De Jong G. I., de Vos R. A., Jansen Steur E. N., Luiten P. G. (2000). Pathological features of cerebral cortical capillaries are doubled in Alzheimer's disease and Parkinson's disease. Acta Neuropathol. 100, 395–402. 10.1007/s004010000195
    1. Fitzgerald M., Bartlett C. A., Payne S. C., Hart N. S., Rodger J., Harvey A. R., et al. . (2010). Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. J. Neurotrauma 27, 2107–2119. 10.1089/neu.2010.1426
    1. Fukae J., Mizuno Y., Hattori N. (2007). Mitochondrial dysfunction in Parkinson's disease. Mitochondrion 7, 58–62. 10.1016/j.mito.2006.12.002
    1. Galluzzi L., Kepp O., Trojel-Hansen C., Kroemer G. (2012). Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207. 10.1161/CIRCRESAHA.112.268946
    1. Garcia-Alloza M., Robbins E. M., Zhang-Nunes S. X., Purcell S. M., Betensky R. A., Raju S., et al. . (2006). Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis. 24, 516–524. 10.1016/j.nbd.2006.08.017
    1. Gitler A. D., Chesi A., Geddie M. L., Strathearn K. E., Hamamichi S., Hill K. J., et al. . (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315. 10.1038/ng.300
    1. Gkotsi D., Begum R., Salt T., Lascaratos G., Hogg C., Chau K.-Y., et al. . (2014). Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp. Eye Res. 122, 50–53. 10.1016/j.exer.2014.02.023
    1. Goedert M. (2015). Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555. 10.1126/science.1255555
    1. Goedert M., Spillantini M. G. (2006). A century of Alzheimer's disease. Science 314, 777–781. 10.1126/science.1132814
    1. Gonzalez-Lima F., Barksdale B. R., Rojas J. C. (2014). Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem. Pharmacol. 88, 584–593. 10.1016/j.bcp.2013.11.010
    1. Grammas P., Martinez J., Miller B. (2011). Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev. Mol. Med. 13:e19. 10.1017/S1462399411001918
    1. Grillo S. L., Duggett N. A., Ennaceur A., Chazot P. L. (2013). Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer's disease mouse model, TASTPM. J. Photochem. Photobiol. B Biol. 123, 13–22. 10.1016/j.jphotobiol.2013.02.015
    1. Hamblin M. R., Demidova T. N. (2006). Mechanisms of low level light therapy, in Proceedings of SPIE-The International Society for Optical Engineering.
    1. Hardy J., Selkoe D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356. 10.1126/science.1072994
    1. Haslinger B., Erhard P., Kämpfe N., Boecker H., Rummeny E., Schwaiger M., et al. . (2001). Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124, 558–570. 10.1093/brain/124.3.558
    1. Hausenloy D. J., Yellon D. M. (2008). Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc. Res. 79, 377–386. 10.1093/cvr/cvn114
    1. Herrup K. (2015). The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 794–799. 10.1038/nn.4017
    1. Hou S. T., Jiang S. X., Smith R. A. (2008). Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int. Rev. Cell Mol. Biol. 267, 125–181. 10.1016/S1937-6448(08)00603-5
    1. Ilic S., Leichliter S., Streeter J., Oron A., DeTaboada L., Oron U. (2006). Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed. Laser Surg. 24, 458–466. 10.1089/pho.2006.24.458
    1. Jankovic J., Poewe W. (2012). Therapies in Parkinson's disease. Curr. Opin. Neurol. 25, 433–447. 10.1097/WCO.0b013e3283542fc2
    1. Johnstone D., Coleman K., Moro C., Torres N., Eells J., Baker G. E., et al. (2014a). The potential of light therapy in Parkinson's disease. ChronoPhysiology Ther. 4, 1–14. 10.2147/CPT.S57180
    1. Johnstone D. M., El Massri N., Moro C., Spana S., Wang X. S., Torres N., et al. . (2014b). Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—an abscopal neuroprotective effect. Neuroscience 274, 93–101. 10.1016/j.neuroscience.2014.05.023
    1. Johnstone D. M., Mitrofanis J., Stone J. (2015). Targeting the body to protect the brain: inducing neuroprotection with remotely-applied near infrared light. Neural Regen. Res. 10, 349–351. 10.4103/1673-5374.153673
    1. Kortekaas R., Leenders K. L., van Oostrom J. C. H., Vaalburg W., Bart J., Willemsen A. T. M., et al. . (2005). Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179. 10.1002/ana.20369
    1. Lampl Y., Zivin J. A., Fisher M., Lew R., Welin L., Dahlof B., et al. . (2007). Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38, 1843–1849. 10.1161/STROKEAHA.106.478230
    1. Lapchak P. A. (2010). Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann. Med. 42, 576–586. 10.3109/07853890.2010.532811
    1. Lapchak P. A., Wei J., Zivin J. A. (2004). Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke 35, 1985–1988. 10.1161/01.STR.0000131808.69640.b7
    1. Liang H. L., Whelan H. T., Eells J. T., Wong-Riley M. T. T. (2008). Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 153, 963–974. 10.1016/j.neuroscience.2008.03.042
    1. Maloney R., Shanks S., Maloney J. (2010). The application of low-level laser therapy for the symptomatic care of late stage Parkinson's disease: a non-controlled, non-randomized study [Abstract]. Am. Soc. Laser Med. Surg. 185.
    1. McCarthy T. J., De Taboada L., Hildebrandt P. K., Ziemer E. L., Richieri S. P., Streeter J. (2010). Long-term safety of single and multiple infrared transcranial laser treatments in Sprague-Dawley rats. Photomed. Laser Surg. 28, 663–667. 10.1089/pho.2009.2581
    1. Merry G., Dotson R., Devenyi R., Markowitz S., Reyes S. (2012). Photobiomodulation as a new treatment for dry age related macular degeneration. results from the toronto and Oak ridge photobimodulation study in AMD (TORPA). Invest. Ophthalmol. Vis. Sci. 53, 2049–2049.
    1. Michalikova S., Ennaceur A., van Rensburg R., Chazot P. L. (2008). Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol. Learn. Mem. 89, 480–488. 10.1016/j.nlm.2007.07.014
    1. Moges H., Vasconcelos O. M., Campbell W. W., Borke R. C., McCoy J. A., Kaczmarczyk L., et al. . (2009). Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg. Med. 41, 52–59. 10.1002/lsm.20732
    1. Moro C., El Massri N., Torres N., Ratel D., De Jaeger X., Chabrol C., et al. . (2014). Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J. Neurosurg. 120, 670–683. 10.3171/2013.9.JNS13423
    1. Moro C., Torres N., El Massri N., Ratel D., Johnstone D. M., Stone J., et al. . (2013). Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC Neurosci. 14:40. 10.1186/1471-2202-14-40
    1. Muili K. A., Gopalakrishnan S., Meyer S. L., Eells J. T., Lyons J.-A. (2012). Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS ONE 7:e30655. 10.1371/journal.pone.0030655
    1. Naeser M. A., Saltmarche A., Krengel M. H., Hamblin M. R., Knight J. A. (2011). Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29, 351–358. 10.1089/pho.2010.2814
    1. Naeser M. A., Zafonte R., Krengel M. H., Martin P. I., Frazier J., Hamblin M. R., et al. . (2014). Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma 31, 1008–1017. 10.1089/neu.2013.3244
    1. Natoli R., Valter K., Barbosa M., Dahlstrom J., Rutar M., Kent A., et al. . (2013). 670 nm photobiomodulation as a novel protection against retinopathy of prematurity: evidence from oxygen induced retinopathy models. PLoS ONE 8:e72135. 10.1371/journal.pone.0072135
    1. Natoli R., Zhu Y., Valter K., Bisti S., Eells J., Stone J. (2010). Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 16, 1801–1822.
    1. Nelson L., Tabet N. (2015). Slowing the progression of Alzheimer's disease; what works? Ageing Res. Rev. 23(Pt B), 193–209. 10.1016/j.arr.2015.07.002
    1. Olanow C. W., Kieburtz K., Schapira A. H. V. (2008). Why have we failed to achieve neuroprotection in Parkinson's disease? Ann. Neurol. 64(Suppl. 2), S101–S110. 10.1002/ana.21461
    1. Oron A., Oron U., Chen J., Eilam A., Zhang C., Sadeh M., et al. . (2006). Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37, 2620–2624. 10.1161/01.STR.0000242775.14642.b8
    1. Oron A., Oron U., Streeter J., De Taboada L., Alexandrovich A., Trembovler V., et al. . (2012). Near infrared transcranial laser therapy applied at various modes to mice following traumatic brain injury significantly reduces long-term neurological deficits. J. Neurotrauma 29, 401–407. 10.1089/neu.2011.2062
    1. Peoples C., Spana S., Ashkan K., Benabid A.-L., Stone J., Baker G. E., et al. . (2012). Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson's disease. Parkinsonism Relat. Disord. 18, 469–476. 10.1016/j.parkreldis.2012.01.005
    1. Postow M. A., Callahan M. K., Barker C. A., Yamada Y., Yuan J., Kitano S., et al. . (2012). Immunologic correlates of the abscopal effect in a patient with melanoma. N.Engl. J. Med. 366, 925–931. 10.1056/NEJMoa1112824
    1. Purushothuman S., Johnstone D. M., Nandasena C., Mitrofanis J., Stone J. (2014). Photobiomodulation with near infrared light mitigates Alzheimer's disease-related pathology in cerebral cortex—evidence from two transgenic mouse models. Alzheimers. Res. Ther. 6, 2. 10.1186/alzrt232
    1. Purushothuman S., Johnstone D. M., Nandasena C., van Eersel J., Ittner L. M., Mitrofanis J., et al. . (2015). Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neurosci. Lett. 591, 155–159. 10.1016/j.neulet.2015.02.037
    1. Purushothuman S., Nandasena C., Johnstone D. M., Stone J., Mitrofanis J. (2013). The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism. Brain Res. 1535, 61–70. 10.1016/j.brainres.2013.08.047
    1. Quirk B. J., Desmet K. D., Henry M., Buchmann E., Wong-Riley M., Eells J. T., et al. . (2012b). Therapeutic effect of near infrared (NIR) light on Parkinson's disease models. Front. Biosci. (Elite. Ed). 4, 818–823.
    1. Quirk B. J., Torbey M., Buchmann E., Verma S., Whelan H. T. (2012a). Near-infrared photobiomodulation in an animal model of traumatic brain injury: improvements at the behavioral and biochemical levels. Photomed. Laser Surg. 30, 523–529. 10.1089/pho.2012.3261
    1. Recasens A., Dehay B., Bové J., Carballo-Carbajal I., Dovero S., Pérez-Villalba A., et al. . (2014). Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys: LB-induced pathology. Ann. Neurol. 75, 351–362. 10.1002/ana.24066
    1. Reinhart F., El Massri N., Darlot F., Moro C., Costecalde T., Peoples C. L., et al. (2015a). Evidence for improved behaviour and neuroprotection after intracranial application of near infrared light in a hemi-parkinsonian rat model. J. Neurosurg. 10.3171/2015.5.JNS15735. [Epub ahead of print].
    1. Reinhart F., El Massri N., Darlot F., Torres N., Johnstone D. M., Chabrol C., et al. . (2015b). 810nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci. Res. 92, 86–90. 10.1016/j.neures.2014.11.005
    1. Rinne J. O. (1993). Nigral degeneration in Parkinson's disease. Mov. Disord. 8(Suppl. 1), S31–S35. 10.1002/mds.870080507
    1. Rojas J., Gonzalez-Lima F. (2011). Low-level light therapy of the eye and brain. Eye Brain 3, 49–67. 10.2147/EB.S21391
    1. Sabatini U., Boulanouar K., Fabre N., Martin F., Carel C., Colonnese C., et al. . (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123(Pt 2), 394–403. 10.1093/brain/123.2.394
    1. Samuel M., Ceballos-Baumann A. O., Blin J., Uema T., Boecker H., Passingham R. E., et al. . (1997). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain 120(Pt 6), 963–976. 10.1093/brain/120.6.963
    1. Schapira A. H. V., Olanow C. W., Greenamyre J. T., Bezard E. (2014). Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 384, 545–555. 10.1016/S0140-6736(14)61010-2
    1. Schiffer F., Johnston A. L., Ravichandran C., Polcari A., Teicher M. H., Webb R. H., et al. . (2009). Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 5:46. 10.1186/1744-9081-5-46
    1. Shaw V. E., Keay K. A., Ashkan K., Benabid A.-L., Mitrofanis J. (2010). Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism Relat. Disord. 16, 338–344. 10.1016/j.parkreldis.2010.02.008
    1. Shaw V. E., Peoples C., Spana S., Ashkan K., Benabid A.-L., Stone J., et al. . (2012). Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-Treated Mice. Parkinsons. Dis. 2012:296875. 10.1155/2012/296875
    1. Sommer A. P., Bieschke J., Friedrich R. P., Zhu D., Wanker E. E., Fecht H. J., et al. . (2012). 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease? Photomed. Laser Surg. 30, 54–60. 10.1089/pho.2011.3073
    1. Stone J. (2008). What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med. Hypotheses 71, 347–359. 10.1016/j.mehy.2008.04.007
    1. Stone J., Johnstone D. M., Mitrofanis J. (2013). The helmet experiment in Parkinson's disease: an observation of the mechanism of neuroprotection by near infra-red light, in 9th WALT Congress (Gold Coast, QLD: ).
    1. Stone J., Johnstone D. M., Mitrofanis J., O'Rourke M. (2015). The mechanical cause of age-related dementia (Alzheimer's disease): the brain is destroyed by the pulse. J. Alzheimers Dis. 44, 355–373. 10.3233/JAD-141884
    1. Swerdlow R. H., Khan S. M. (2004). A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease. Med. Hypotheses 63, 8–20. 10.1016/j.mehy.2003.12.045
    1. Tang X., Luo Y.-X., Chen H.-Z., Liu D.-P. (2014). Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 5:175. 10.3389/fphys.2014.00175
    1. Tata D., Waynant R. (2012). Laser therapy: a review of its mechanism of action and potential medical applications. Laser Photonics. Rev. 1, 1–12. 10.1002/lpor.200900032
    1. Taylor R. C., Berendzen K. M., Dillin A. (2014). Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat. Rev. Mol. Cell Biol. 15, 211–217. 10.1038/nrm3752
    1. Tierney T. S., Vasudeva V. S., Weir S., Hayes M. T. (2013). Neuromodulation for neurodegenerative conditions. Front. Biosci. (Elite. Ed). 5, 490–499. 10.2741/E630
    1. Trimmer P. A., Schwartz K. M., Borland M. K., De Taboada L., Streeter J., Oron U. (2009). Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy. Mol. Neurodegener. 4:26. 10.1186/1750-1326-4-26
    1. Tuby H., Maltz L., Oron U. (2011). Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers Surg. Med. 43, 401–409. 10.1002/lsm.21063
    1. van Eersel J., Ke Y. D., Liu X., Delerue F., Kril J. J., Götz J., et al. . (2010). Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc. Natl. Acad. Sci. U.S.A. 107, 13888–13893. 10.1073/pnas.1009038107
    1. Vos M., Lovisa B., Geens A., Morais V. A., Wagnières G., van den Bergh H., et al. . (2013). Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 Model. PLoS ONE 8:e78562. 10.1371/journal.pone.0078562
    1. Whelan H. T., DeSmet K. D., Buchmann E. V., Henry M. M., Wong-Riley M., Eells J. T., et al. . (2008). Harnessing the cell's own ability to repair and prevent neurodegenerative disease. SPIE Newsroom 24, 1–3. 10.1117/2.1200802.1014
    1. Wong-Riley M. T. T., Liang H. L., Eells J. T., Chance B., Henry M. M., Buchmann E., et al. . (2005). Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J. Biol. Chem. 280, 4761–4771. 10.1074/jbc.M409650200
    1. Xuan W., Agrawal T., Huang L., Gupta G. K., Hamblin M. R. (2015). Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J. Biophoton. 8, 502–511. 10.1002/jbio.201400069
    1. Xuan W., Vatansever F., Huang L., Hamblin M. R. (2014). Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J. Biomed. Opt. 19:108003. 10.1117/1.JBO.19.10.108003
    1. Xuan W., Vatansever F., Huang L., Wu Q., Xuan Y., Dai T., et al. . (2013). Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PLoS ONE 8:e53454. 10.1371/journal.pone.0053454
    1. Yetgin T., Manintveld O. C., Groen F., Tas B., Kappetein A. P., van Geuns R.-J., et al. . (2012). The emerging application of remote ischemic conditioning in the clinical arena. Cardiol. Rev. 20, 279–287. 10.1097/CRD.0b013e31826c15aa
    1. Ying R., Liang H. L., Whelan H. T., Eells J. T., Wong-Riley M. T. T. (2008). Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 1243, 167–173. 10.1016/j.brainres.2008.09.057
    1. Zhao G., Guo K., Dan J. (2003). 36 case analysis of Parkinson's disease treated by endonasal low energy He-Ne laser. Acta Acad. Med. Qingdao Univ. (Chinese) 39, 398.
    1. Zivin J. A., Albers G. W., Bornstein N., Chippendale T., Dahlof B., Devlin T., et al. . (2009). Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40, 1359–1364. 10.1161/STROKEAHA.109.547547

Source: PubMed

3
Suscribir