Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma

Joaquim Bellmunt, Aly-Khan A Lalani, Sussana Jacobus, Stephanie A Wankowicz, Laura Polacek, David Y Takeda, Lauren C Harshman, Nikhil Wagle, Irene Moreno, Kevin Lundgren, Dominick Bossé, Eliezer M Van Allen, Toni K Choueiri, Jonathan E Rosenberg, Joaquim Bellmunt, Aly-Khan A Lalani, Sussana Jacobus, Stephanie A Wankowicz, Laura Polacek, David Y Takeda, Lauren C Harshman, Nikhil Wagle, Irene Moreno, Kevin Lundgren, Dominick Bossé, Eliezer M Van Allen, Toni K Choueiri, Jonathan E Rosenberg

Abstract

Background: Metastatic urothelial carcinoma (mUC) is a genomically diverse disease with known alterations in the mTOR pathway and tyrosine kinases including FGFR. We investigated the efficacy and safety of combination treatment with everolimus and pazopanib (E/P) in genomically profiled patients with mUC.

Methods: mUC patients enrolled on a Phase I dose escalation study and an expansion cohort treated with E/P were included. The primary end point was objective response rate (ORR); secondary end points were safety, duration of response (DOR), progression-free survival (PFS) and overall survival (OS). Patients were assessed for mutations and copy number alterations in 300 relevant cancer-associated genes using next-generation sequencing and findings were correlated with outcomes. Time-to-event data were estimated with Kaplan-Meier methods.

Results: Of the 23 patients enrolled overall, 19 had mUC. ORR was 21% (one complete response (CR), three partial responses (PR), eight with stable disease (SD). DOR, PFS and OS were 6.5, 3.6, and 9.1 months, respectively. Four patients with clinical benefit (one CR, two PR, one SD) had mutations in TSC1/TSC2 or mTOR and a 5th patient with PR had a FGFR3-TACC3 fusion.

Conclusions: Combination therapy with E/P is safe in mUC and select patients with alterations in mTOR or FGFR pathways derive significant clinical benefit.

Trial registration: ClinicalTrials.gov NCT01184326.

Conflict of interest statement

J.B.: Honoraria/consulting from Astellas, Genentech, Merck, Novartis, Pfizer, Pierre Fabre; institutional research funding/support from Millenium, Sanofi, MSD Oncology, Pfizer. A.A.L.: Honoraria/consulting from Novartis; travel expenses from Pfizer. L.C.H.: Honoraria/consulting from Genentech, Pfizer, Dendreon, NCCN, Medivation/Astellas, KEW; institutional research funding/support from Bayer, Medivation/Astellas, Pfizer, Dendreon, Sotio, Genentech, Merck, BMS, Jannsen. E.M.V.A.: Honoraria/consulting from Genome Medical, Novartis, Roche, Syapse, Takeda, Third Rock Ventures; institutional research funding/support from Bristol-Myers Squibb, Novartis. T.K.C.: Honoraria/consulting from Alligent, AstraZeneca, Bayer, Bristol-Myers Squibb, Cerulean Pharma, Eisai, Exelixis, Foundation Medicine, GlaxoSmithKline, Merck, Novartis, Peloton, Pfizer, Prometheus, Roche/Genentech; institutional research funding/support from Pfizer, Exelixis, Bristol-Myers Squibb, Novartis, Peloton, AstraZeneca, Agensys, TRACON. J.E.R.: Honoraria/consulting from Agensys, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol- Myers Squibb, EMD Serono, Lilly, Merck, Oncogenex, Roche/Genentech, Sanofi, Seattle Genetics; institutional research funding/support from Agensys, Genentech/Roche, Mirati Therapeutics, Novartis, Oncogenex, Viralytics. The remaining authors declare no competing interests.

References

    1. Iyer G., et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 2012; 338: 221.
    1. Sadeghi S, Garcia AJ. Current status of targeted therapy in metastatic transitional cell carcinoma of the bladder. Semin. Oncol. 2012;39:608–614. doi: 10.1053/j.seminoncol.2012.08.004.
    1. Sjödahl G, et al. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS. One. 2011;6:e18583. doi: 10.1371/journal.pone.0018583.
    1. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 2013;22:795–803. doi: 10.1093/hmg/dds486.
    1. Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J. Clin. Oncol. 2013;31:1806–1814. doi: 10.1200/JCO.2012.46.8934.
    1. ŁP Fus, Górnicka, Role B. of angiogenesis in urothelial bladder carcinoma. Cent. Eur. J. Urol. 2016;69:258–263.
    1. Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab. Investig. 2010;90:1406–1414. doi: 10.1038/labinvest.2010.133.
    1. O’Reilly T, et al. Differential anti-vascular effects of mTOR or VEGFR pathway inhibition: A rational basis for combining RAD001 and PTK787/ZK222584. Proc. Annu. Meet. Am. Assoc. Cancer Res. 2005;46:3038.
    1. Ikezoe T, et al. Effect of SU11248 on gastrointestinal stromal tumor-T1 cells: Enhancement of growth inhibition via inhibition of 3- kinase/Akt/mammalian target of rapamycin signaling. Cancer Sci. 2006;97:945–951. doi: 10.1111/j.1349-7006.2006.00263.x.
    1. Juengel E, et al. Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells. Bmc. Cancer. 2009;9:161. doi: 10.1186/1471-2407-9-161.
    1. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist. Updat. 2008;11:32–50. doi: 10.1016/j.drup.2007.11.003.
    1. Papadimitrakopoulou VA, et al. Everolimus and erlotinib as second- or thirdline therapy in patients with advanced non-small-cell lung cancer. J. Thorac. Oncol. 2012;7:1594–1601. doi: 10.1097/JTO.0b013e3182614835.
    1. Rodrigues HV, et al. Phase I combination of pazopanib and everolimus in PIK3CA mutation positive/PTEN loss patients with advanced solid tumors refractory to standard therapy. Invest. New Drugs. 2015;33:700–709. doi: 10.1007/s10637-015-0238-2.
    1. Wagle N, et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014;4:546–553. doi: 10.1158/-13-0353.
    1. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Sholl LM, et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight. 2016;1:e87062. doi: 10.1172/jci.insight.87062.
    1. Bellmunt J, et al. Feasibility trial of methotrexate-paclitaxel as a second line therapy in advanced urothelial cancer. Cancer Invest. 2002;20:673. doi: 10.1081/CNV-120003536.
    1. Krege S, Rembrink V, Börgermann C, Otto T, Rubben H. Docetaxel and ifosfamide as second line treatment for patients with advanced or metastatic urothelial cancer after failure of platinum chemotherapy: a phase 2 study. J. Urol. 2001;165:67. doi: 10.1097/00005392-200101000-00017.
    1. Lin CC, et al. Gemcitabine and ifosfamide as a second-line treatment for cisplatin-refractory metastatic urothelial carcinoma: a phase II study. Anticancer Drugs. 2007;18:487. doi: 10.1097/CAD.0b013e3280126603.
    1. Soga N, Onishi T, Arima K, Sugimura Y. Paclitaxel Carboplatin chemotherapy as a second- line chemotherapy for advanced platinum resistant urothelial cancer in Japanese cases. Int. J. Urol. 2007;14:828. doi: 10.1111/j.1442-2042.2007.01831.x.
    1. Suyama T, et al. Combination of gemcitabine and paclitaxel as second-line chemotherapy for advanced urothelial carcinoma. Jpn. J. Clin. Oncol. 2009;39:244. doi: 10.1093/jjco/hyp003.
    1. Albers P, et al. Randomized phase III trial of 2nd line gemcitabine and paclitaxel chemotherapy in patients with advanced bladder cancer: short-term versus prolonged treatment [German Association of Urological Oncology (AUO) trial AB 20/99] Ann. Oncol. 2011;22:288. doi: 10.1093/annonc/mdq398.
    1. Rosenberg JE, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920. doi: 10.1016/S0140-6736(16)00561-4.
    1. Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single- arm, phase 2 trial. Lancet Oncol. 2017;18:312–322. doi: 10.1016/S1470-2045(17)30065-7.
    1. Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 2017;376:1015–1026. doi: 10.1056/NEJMoa1613683.
    1. Powles Thomas, O'Donnell Peter H., Massard Christophe, Arkenau Hendrik-Tobias, Friedlander Terence W., Hoimes Christopher J., Lee Jae Lyun, Ong Michael, Sridhar Srikala S., Vogelzang Nicholas J., Fishman Mayer N., Zhang Jingsong, Srinivas Sandy, Parikh Jigar, Antal Joyce, Jin Xiaoping, Gupta Ashok K., Ben Yong, Hahn Noah M. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma. JAMA Oncology. 2017;3(9):e172411. doi: 10.1001/jamaoncol.2017.2411.
    1. Apolo AB, et al. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J. Clin. Oncol. 2017;35:2117–2124. doi: 10.1200/JCO.2016.71.6795.
    1. Farina MS, Lundgren KT, Bellmunt J. Immunotherapy in urothelial carcinoma: recent results and future perspectives. Drugs. 2017;77:1077–1089. doi: 10.1007/s40265-017-0748-7.
    1. Powles T. IMvigor211: A phase III randomized study examining atezolizumab versus chemotherapy for platinum-treated advanced urothelial carcinoma. EACR-AACR-SIC Special Conference. June 24-27, 2017, Florence, Italy, abstract 606.
    1. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315. doi: 10.1038/nature12965.
    1. Ross JS, et al. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations. Cancer. 2016;122:702–711. doi: 10.1002/cncr.29826.
    1. Huang J, Manning B. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 2008;412:179–190. doi: 10.1042/BJ20080281.
    1. Davies DM, et al. Sirolimus Therapy for Angiomyolipoma in Tuberous Sclerosis and Sporadic Lymphangioleiomyomatosis: A Phase 2 Trial. Clin. Cancer Res. 2011;17:4071–4081. doi: 10.1158/1078-0432.CCR-11-0445.
    1. Bissler JJ, et al. Sirolimus for Angiomyolipoma in Tuberous Sclerosis Complex or Lymphangioleiomyomatosis. N. Engl. J. Med. 2008;358:140–151. doi: 10.1056/NEJMoa063564.
    1. Klümpen HJ, et al. mTOR Inhibitor Treatment of Pancreatic Cancer in a Patient With Peutz-Jeghers Syndrome. J. Clin. Oncol. 2011;29:e150–e153. doi: 10.1200/JCO.2010.32.7825.
    1. Turner N, Grose R. Fibroblast growth factor signaling: from development to cancer. Nat. Rev. Cancer. 2010;10:116–129. doi: 10.1038/nrc2780.
    1. Wu YM, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3:636–647. doi: 10.1158/-13-0050.
    1. Nelson KN, et al. Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation. Mol. Cancer Res. 2016;14:458–469. doi: 10.1158/1541-7786.MCR-15-0497.
    1. Chen CH, et al. Trichlorobenzene-substituted azaaryl compounds as novel FGFR inhibitors exhibiting potent antitumor activity in bladder cancer cells in vitro and in vivo. Oncotarget. 2016;7:26374–26387.
    1. Acquaviva J, et al. FGFR3 Translocations in Bladder Cancer: Differential Sensitivity to HSP90 Inhibition Based on Drug Metabolism. Mol. Cancer Res. 2014;12:1042–1054. doi: 10.1158/1541-7786.MCR-14-0004.
    1. Palma N, Morris JC, Ali SM, Ross JS, Pal SK. Exceptional Response to Pazopanib in a Patient with Urothelial Carcinoma Harboring FGFR3 Activating Mutation and Amplification. Eur. Urol. 2015;68:168–170. doi: 10.1016/j.eururo.2015.02.023.

Source: PubMed

3
Suscribir