Deep brain stimulation of the Cuneiform nucleus for levodopa-resistant freezing of gait in Parkinson's disease: study protocol for a prospective, pilot trial

Stephano J Chang, Iahn Cajigas, James D Guest, Brian R Noga, Eva Widerström-Noga, Ihtsham Haq, Letitia Fisher, Corneliu C Luca, Jonathan R Jagid, Stephano J Chang, Iahn Cajigas, James D Guest, Brian R Noga, Eva Widerström-Noga, Ihtsham Haq, Letitia Fisher, Corneliu C Luca, Jonathan R Jagid

Abstract

Background: Freezing of gait (FOG) is a particularly debilitating motor deficit seen in a subset of Parkinson's disease (PD) patients that is poorly responsive to standard levodopa therapy or deep brain stimulation (DBS) of established PD targets such as the subthalamic nucleus and the globus pallidus interna. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN) to address FOG, was based on its observed pathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region, a functionally defined area of the midbrain that elicits locomotion in both intact animals and decerebrate animal preparations with electrical stimulation. Initial reports of PPN DBS were met with much enthusiasm; however, subsequent studies produced mixed results, and recent meta-analysis results have been far less convincing than initially expected. A closer review of the extensive mesencephalic locomotor region (MLR) preclinical literature, including recent optogenetics studies, strongly suggests that the closely related cuneiform nucleus (CnF), just dorsal to the PPN, may be a superior target to promote gait initiation.

Methods: We will conduct a prospective, open-label, single-arm pilot study to assess safety and feasibility of CnF DBS in PD patients with levodopa-refractory FOG. Four patients will receive CnF DBS and have gait assessments with and without DBS during a 6-month follow-up.

Discussion: This paper presents the study design and rationale for a pilot study investigating a novel DBS target for gait dysfunction, including targeting considerations. This pilot study is intended to support future larger scale clinical trials investigating this target.

Trial registration: ClinicalTrials.gov identifier: NCT04218526 (registered January 6, 2020).

Keywords: Cuneiform nucleus (CnF); Freezing of gait (FOG); Gait dysfunction; Mesencephalic locomotor region (MLR); Parkinson’s disease; Pedunculopontine nucleus (PPN).

Conflict of interest statement

The study is funded in part by Boston Scientific through their Investigator Sponsored Research Award. JJ and CL have consulting agreements with Medtronic Inc., Boston Scientific, Inc., and Abbott Medical. JJ has two funded grants through Medtronic and Boston Scientific. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Three-dimensional anatomy of the human MLR and expected side effects of DBS. Reconstructions were made using Lead-DBS and available MNI-space subcortical atlases [44]. A separate CnF (cyan) NIfTI object was created in relation to the PPN (dark purple) based on Olszewski and Baxter’s Atlas [45]. A Sagittal projection (5 mm lateral to midline) of the CnF (cyan) and PPN (dark purple) with overlay of active contacts from PPN DBS patients with poor (red), good (green), best (blue), and unevaluated (yellow) gait outcomes from Goetz et al. [43]. B Diagonal 3D view with right ML and STT absent to visualize the MLR, projected on to a transverse slice of the brain at the level of the pons. C Chart lists nearby structures, their relation to the CnF, and expected side effects of stimulation. CnF Cuneiform nucleus, CTT central tegmental tract, dSCP decussation of superior cerebellar peduncle, LC locus coeruleus, ML medial lemniscus, PPN Pedunculopontine nucleus, RN red nucleus, STT spinothalamic tract. Adapted from Fig. 2 of [46] with permission
Fig. 2
Fig. 2
Flow chart of study outline

References

    1. Allen NE, Schwarzel AK, Canning CG. Recurrent falls in Parkinson’s disease: a systematic review. Park Dis. 2013;2013:906274.
    1. Wu T, Hallett M, Chan P. Motor automaticity in Parkinson’s disease. Neurobiol Dis. 2015;82:226–234. doi: 10.1016/j.nbd.2015.06.014.
    1. Collomb-Clerc A, Welter ML. Effects of deep brain stimulation on balance and gait in patients with Parkinson's disease: a systematic neurophysiological review. Neurophysiologie clinique = Clin Neurophysiol. 2015;45(4-5):371–388. doi: 10.1016/j.neucli.2015.07.001.
    1. Galna B, Lord S, Burn DJ, Rochester L. Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov Disord. 2015;30(3):359–367. doi: 10.1002/mds.26110.
    1. Giladi N, Nieuwboer A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord. 2008;23(Suppl 2):S423–S425. doi: 10.1002/mds.21927.
    1. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–884. doi: 10.1002/mds.20115.
    1. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destee A, et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 2014;71(7):884–890. doi: 10.1001/jamaneurol.2014.753.
    1. Canning CG, Paul SS, Nieuwboer A. Prevention of falls in Parkinson’s disease: a review of fall risk factors and the role of physical interventions. Neurodegenerative Dis Manag. 2014;4(3):203–221. doi: 10.2217/nmt.14.22.
    1. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, Fahn S. Motor blocks in Parkinson’s disease. Neurology. 1992;42(2):333–339. doi: 10.1212/WNL.42.2.333.
    1. Lamberti P, Armenise S, Castaldo V, de Mari M, Iliceto G, Tronci P, Serlenga L. Freezing gait in Parkinson’s disease. Eur Neurol. 1997;38(4):297–301. doi: 10.1159/000113398.
    1. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR. Freezing of gait: a practical approach to management. Lancet Neurol. 2015;14(7):768–778. doi: 10.1016/S1474-4422(15)00041-1.
    1. Santens P. Neuromodulatory procedures for gait disorders in Parkinson’s disease. Acta Neurol Belg. 2018;118(1):13–19. doi: 10.1007/s13760-017-0862-z.
    1. Macht M, Kaussner Y, Möller JC, Stiasny-Kolster K, Eggert KM, Krüger H-P, Ellgring H. Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov Disord. 2007;22(7):953–956. doi: 10.1002/mds.21458.
    1. Lee JW, Song YS, Kim H, Ku BD, Lee WW. Alteration of tremor dominant and postural instability gait difficulty subtypes during the progression of Parkinson’s disease: analysis of the PPMI cohort. Front Neurol. 2019;10:471. doi: 10.3389/fneur.2019.00471.
    1. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC. How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: comparison with the unified Parkinson's disease rating scale. Mov Disord. 2013;28(5):668–670. doi: 10.1002/mds.25383.
    1. Shik ML, Severin FV, Orlovskii GN. Control of walking and running by means of electric stimulation of the midbrain. Biofizika. 1966;11(4):659–666.
    1. Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K. Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res. 1989;505(1):66–74. doi: 10.1016/0006-8993(89)90116-9.
    1. Skinner RD, Garcia-Rill E. The mesencephalic locomotor region (MLR) in the rat. Brain Res. 1984;323(2):385–389. doi: 10.1016/0006-8993(84)90319-6.
    1. Eidelberg E, Walden JG, Nguyen LH. Locomotor control in macaque monkeys. Brain. 1981;104(Pt 4):647–663. doi: 10.1093/brain/104.4.647-a.
    1. Bernau NA, Puzdrowski RL, Leonard RB. Identification of the midbrain locomotor region and its relation to descending locomotor pathways in the Atlantic stingray, Dasyatis sabina. Brain Res. 1991;557(1-2):83–94. doi: 10.1016/0006-8993(91)90119-G.
    1. Cabelguen JM, Bourcier-Lucas C, Dubuc R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens. J Neurosci. 2003;23(6):2434–2439. doi: 10.1523/JNEUROSCI.23-06-02434.2003.
    1. Musienko PE, Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Postural performance in decerebrated rabbit. Behav Brain Res. 2008;190(1):124–134. doi: 10.1016/j.bbr.2008.02.011.
    1. Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, et al. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain stimulation. 2021;14(3):467-76.
    1. Bachmann LC, Matis A, Lindau NT, Felder P, Gullo M, Schwab ME. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Sci Transl Med. 2013;5(208):208ra146. doi: 10.1126/scitranslmed.3005972.
    1. Fluri F, Mutzel T, Schuhmann MK, Krstic M, Endres H, Volkmann J. Development of a head-mounted wireless microstimulator for deep brain stimulation in rats. J Neurosci Methods. 2017;291:249–256. doi: 10.1016/j.jneumeth.2017.08.024.
    1. Noga BR, Santamaria AJ, Chang S, Benavides FD, Sanchez FJ, Villamil LM, et al. The micropig model of neurosurgery and spinal cord injury in experiments of motor control. In: Whelan PJ, Sharples S, et al., editors. The neural control of movement: model systems and tools to study locomotor function. Academic Press/Elsevier; 2021.
    1. Piallat B, Chabardes S, Torres N, Fraix V, Goetz L, Seigneuret E, et al. Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience. 2009;158(4):1201–1205. doi: 10.1016/j.neuroscience.2008.10.046.
    1. Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci. 2014;17(3):449–454. doi: 10.1038/nn.3642.
    1. Jahn K, Deutschlander A, Stephan T, Kalla R, Wiesmann M, Strupp M, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage. 2008;39(2):786–792. doi: 10.1016/j.neuroimage.2007.09.047.
    1. Follett KA, Torres-Russotto D. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: which target? Parkinsonism Relat Disord. 2012;18:S165–S1S7. doi: 10.1016/S1353-8020(11)70051-7.
    1. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Jr, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73. doi: 10.1001/jama.2008.929.
    1. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75(14):1292–1299. doi: 10.1212/WNL.0b013e3181f61329.
    1. Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, Butson C, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20. doi: 10.1002/mds.27098.
    1. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport. 2005;16(17):1877–1881. doi: 10.1097/01.wnr.0000187629.38010.12.
    1. Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport. 2005;16(17):1883–1887. doi: 10.1097/01.wnr.0000187637.20771.a0.
    1. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010;133(Pt 1):215–224. doi: 10.1093/brain/awp261.
    1. Wang JW, Zhang YQ, Zhang XH, Wang YP, Li JP, Li YJ. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease: a meta-analysis of individual patient data. World Neurosurg. 2017;102:72–78. doi: 10.1016/j.wneu.2017.02.110.
    1. Wang H, Gao H, Jiao T, Luo Z. A meta-analysis of the pedunculopontine nucleus deep-brain stimulation effects on Parkinson’s disease. Neuroreport. 2016;27(18):1336–1344. doi: 10.1097/WNR.0000000000000697.
    1. Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL. Efficacy and safety of pedunculopontine nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci. 2016;43(1):120–126. doi: 10.1017/cjn.2015.318.
    1. Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain. 2011;134(Pt 1):11–23. doi: 10.1093/brain/awq322.
    1. Albin RL, Surmeier DJ, Tubert C, Sarter M, Müller MLTM, Bohnen NI, et al. Targeting the pedunculopontine nucleus in Parkinson’s disease: time to go back to the drawing board. Mov Disord. 2018;33(12):1871–1875. doi: 10.1002/mds.27540.
    1. Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80(12):1148–1155. doi: 10.1212/WNL.0b013e3182886a76.
    1. Goetz L, Bhattacharjee M, Ferraye MU, Fraix V, Maineri C, Nosko D, Fenoy AJ, Piallat B, Torres N, Krainik A, Seigneuret E, David O, Parent M, Parent A, Pollak P, Benabid AL, Debu B, Chabardès S. Deep brain stimulation of the pedunculopontine nucleus area in parkinson disease: MRI-based anatomoclinical correlations and optimal target. Neurosurgery. 2019;84(2):506–518. doi: 10.1093/neuros/nyy151.
    1. Horn A, Kühn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage. 2015;107:127–135. doi: 10.1016/j.neuroimage.2014.12.002.
    1. Olszewski J, Baxter D. Cytoarchitecture of the human brain stem. Basel: S. Karger; 1982.
    1. Chang SJ, Cajigas I, Opris I, Guest JD, Noga BR. Dissecting brainstem locomotor circuits: converging evidence for cuneiform nucleus stimulation. Front Syst Neurosci. 2020;14. 10.3389/fnsys.2020.00064.
    1. Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr Biol. 2018;28(6):884–901.e3. doi: 10.1016/j.cub.2018.02.007.
    1. Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C, Bouvier J, Caldeira V, Fisone G, Kiehn O. Midbrain circuits that set locomotor speed and gait selection. Nature. 2018;553(7689):455–460. doi: 10.1038/nature25448.
    1. Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of brainstem neurons during mesencephalic locomotor region-evoked locomotion in the cat. Front Syst Neurosci. 2019;13:69. doi: 10.3389/fnsys.2019.00069.
    1. Zitella LM, Mohsenian K, Pahwa M, Gloeckner C, Johnson MD. Computational modeling of pedunculopontine nucleus deep brain stimulation. J Neural Eng. 2013;10(4):045005. doi: 10.1088/1741-2560/10/4/045005.
    1. Giannini G, Francois M, Lhommée E, Polosan M, Schmitt E, Fraix V, Castrioto A, Ardouin C, Bichon A, Pollak P, Benabid AL, Seigneuret E, Chabardes S, Wack M, Krack P, Moro E. Suicide and suicide attempts after subthalamic nucleus stimulation in Parkinson disease. Neurology. 2019;93(1):e97–e105. doi: 10.1212/WNL.0000000000007665.
    1. Cordeiro JG, Diaz A, Davis JK, Di Luca DG, Farooq G, Luca CC, et al. Safety of noncontrast imaging-guided deep brain stimulation electrode placement in Parkinson disease. World Neurosurg. 2020;134:e1008–e1e14. doi: 10.1016/j.wneu.2019.11.071.
    1. Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna, Austria : 1996) 2016;123(7):695–729. doi: 10.1007/s00702-015-1475-4.
    1. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–214. doi: 10.1093/brain/awp229.

Source: PubMed

3
Suscribir