Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances

Anna Fernández-Falgueras, Georgia Sarquella-Brugada, Josep Brugada, Ramon Brugada, Oscar Campuzano, Anna Fernández-Falgueras, Georgia Sarquella-Brugada, Josep Brugada, Ramon Brugada, Oscar Campuzano

Abstract

Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). This review focuses on cardiac channelopathies, which are characterized by lethal arrhythmias in the structurally normal heart, incomplete penetrance, and variable expressivity. Arrhythmias in these diseases result from pathogenic variants in genes encoding cardiac ion channels or associated proteins. Due to a lack of gross structural changes in the heart, channelopathies are often considered as potential causes of death in otherwise unexplained forensic autopsies. The asymptomatic nature of channelopathies is cause for concern in family members who may be carrying genetic risk factors, making the identification of these genetic factors of significant clinical importance.

Keywords: arrhythmias; channelopathies; genetics; sudden cardiac death.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Brugada syndrome type I electrocardiogram (ECG) from a 59-year-old male.
Figure 2
Figure 2
Diagram of the overlap between the genes associated with Brugada syndrome (BrS), short QT syndrome (SQTS), long short QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT).
Figure 3
Figure 3
ECG from a 20-year-old patient with LQTS.
Figure 4
Figure 4
ECG from a patient with SQTS.
Figure 5
Figure 5
Exercise ECGs from a patient with CPVT. (a) Basal; (b) Bidireccional ventricular arrhythmia.

References

    1. De Luna A.B., Elosua R. Sudden death. Rev. Esp. Cardiol. 2012;65:1039–1052.
    1. Pachon M., Almendral J. Sudden death: Managing the patient who survives. Heart. 2011;97:1619–1625. doi: 10.1136/hrt.2009.188375.
    1. Basso C., Carturan E., Pilichou K., Rizzo S., Corrado D., Thiene G. Sudden cardiac death with normal heart: Molecular autopsy. Cardiovasc. Pathol. 2010;19:321–325. doi: 10.1016/j.carpath.2010.02.003.
    1. Oliva A., Flores J., Merigioli S., LeDuc L., Benito B., Partemi S., Arzamendi D., Campuzano O., Leung T.L., Iglesias A., et al. Autopsy investigation and bayesian approach to coronary artery disease in victims of motor-vehicle accidents. Atherosclerosis. 2011;218:28–32. doi: 10.1016/j.atherosclerosis.2011.05.012.
    1. Podrid P.J., Myerburg R.J. Epidemiology and stratification of risk for sudden cardiac death. Clin. Cardiol. 2005;28:I3–I11. doi: 10.1002/clc.4960281303.
    1. Nichol G., Rumsfeld J., Eigel B., Abella B.S., Labarthe D., Hong Y., O’Connor R.E., Mosesso V.N., Berg R.A., Leeper B.B., et al. Essential features of designating out-of-hospital cardiac arrest as a reportable event: A scientific statement from the American Heart Association Emergency Cardiovascular Care Committee; Council on Cardiopulmonary, Perioperative, And Critical Care; Council on Cardiovascular Nursing; Council on Clinical Cardiology; and Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2008;117:2299–2308.
    1. Chugh S.S., Senashova O., Watts A., Tran P.T., Zhou Z., Gong Q., Titus J.L., Hayflick S.J. Postmortem molecular screening in unexplained sudden death. J. Am. Coll. Cardiol. 2004;43:1625–1629. doi: 10.1016/j.jacc.2003.11.052.
    1. De Vreede-Swagemakers J.J., Gorgels A.P., Dubois-Arbouw W.I., van Ree J.W., Daemen M.J., Houben L.G., Wellens H.J. Out-of-hospital cardiac arrest in the 1990’s: A population-based study in the maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 1997;30:1500–1505. doi: 10.1016/S0735-1097(97)00355-0.
    1. Byrne R., Constant O., Smyth Y., Callagy G., Nash P., Daly K., Crowley J. Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur. Heart J. 2008;29:1418–1423. doi: 10.1093/eurheartj/ehn155.
    1. Hua W., Zhang L.F., Wu Y.F., Liu X.Q., Guo D.S., Zhou H.L., Gou Z.P., Zhao L.C., Niu H.X., Chen K.P., et al. Incidence of sudden cardiac death in China: Analysis of 4 regional populations. J. Am. Coll. Cardiol. 2009;54:1110–1118. doi: 10.1016/j.jacc.2009.06.016.
    1. Eckart R.E., Shry E.A., Burke A.P., McNear J.A., Appel D.A., Castillo-Rojas L.M., Avedissian L., Pearse L.A., Potter R.N., Tremaine L., et al. Sudden death in young adults: An autopsy-based series of a population undergoing active surveillance. J. Am. Coll. Cardiol. 2011;58:1254–1261. doi: 10.1016/j.jacc.2011.01.049.
    1. Fishman G.I., Chugh S.S., Dimarco J.P., Albert C.M., Anderson M.E., Bonow R.O., Buxton A.E., Chen P.S., Estes M., Jouven X., et al. Sudden cardiac death prediction and prevention: Report from a National Heart, Lung, And Blood Institute And Heart Rhythm Society Workshop. Circulation. 2010;122:2335–2348. doi: 10.1161/CIRCULATIONAHA.110.976092.
    1. Myerburg R.J., Junttila M.J. Sudden cardiac death caused by coronary heart disease. Circulation. 2012;125:1043–1052. doi: 10.1161/CIRCULATIONAHA.111.023846.
    1. Arzamendi D., Benito B., Tizon-Marcos H., Flores J., Tanguay J.F., Ly H., Doucet S., Leduc L., Leung T.K., Campuzano O., et al. Increase in sudden death from coronary artery disease in young adults. Am. Heart J. 2011;161:574–580. doi: 10.1016/j.ahj.2010.10.040.
    1. Boczek N.J., Tester D.J., Ackerman M.J. The molecular autopsy: An indispensable step following sudden cardiac death in the young? Herzschrittmacherther. Elektrophysiol. 2012;23:167–173. doi: 10.1007/s00399-012-0222-x.
    1. Campuzano O., Sanchez-Molero O., Allegue C., Coll M., Mademont-Soler I., Selga E., Ferrer-Costa C., Mates J., Iglesias A., Sarquella-Brugada G., et al. Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic. Sci. Int. 2014;245:30–37. doi: 10.1016/j.forsciint.2014.10.004.
    1. Campuzano O., Allegue C., Partemi S., Iglesias A., Oliva A., Brugada R. Negative autopsy and sudden cardiac death. Int. J. Leg. Med. 2014;128:599–606. doi: 10.1007/s00414-014-0966-4.
    1. Nerbonne J.M., Kass R.S. Molecular physiology of cardiac repolarization. Physiol. Rev. 2005;85:1205–1253. doi: 10.1152/physrev.00002.2005.
    1. Roden D.M., Balser J.R., George A.L., Jr., Anderson M.E. Cardiac ion channels. Annu. Rev. Physiol. 2002;64:431–475. doi: 10.1146/annurev.physiol.64.083101.145105.
    1. Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies. Pflugers Arch. 2010;460:223–237. doi: 10.1007/s00424-009-0761-0.
    1. Antzelevitch C., Brugada P., Borggrefe M., Brugada J., Brugada R., Corrado D., Gussak I., LeMarec H., Nademanee K., Perez Riera A.R., et al. Brugada syndrome: Report of the second consensus conference. Heart Rhythm. 2005;2:429–440. doi: 10.1016/j.accreview.2005.05.069.
    1. Berne P., Brugada J. Brugada syndrome 2012. Circ. J. 2012;76:1563–1571. doi: 10.1253/circj.CJ-12-0717.
    1. Brugada R., Campuzano O., Sarquella-Brugada G., Brugada J., Brugada P. Brugada syndrome. Methodist Debakey Cardiovasc J. 2014;10:25–28. doi: 10.14797/mdcj-10-1-25.
    1. Coronel R., Casini S., Koopmann T.T., Wilms-Schopman F.J., Verkerk A.O., de Groot J.R., Bhuiyan Z., Bezzina C.R., Veldkamp M.W., Linnenbank A.C., et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: A combined electrophysiological, genetic, histopathologic, and computational study. Circulation. 2005;112:2769–2777. doi: 10.1161/CIRCULATIONAHA.105.532614.
    1. Frustaci A., Russo M.A., Chimenti C. Structural myocardial abnormalities in asymptomatic family members with Brugada syndrome and SCN5A gene mutation. Eur. Heart J. 2009 doi: 10.1093/eurheartj/ehp148.
    1. Wilde A.A., Antzelevitch C., Borggrefe M., Brugada J., Brugada R., Brugada P., Corrado D., Hauer R.N., Kass R.S., Nademanee K., et al. Proposed diagnostic criteria for the brugada syndrome: Consensus report. Circulation. 2002;106:2514–2519. doi: 10.1161/01.CIR.0000034169.45752.4A.
    1. Priori S.G., Wilde A.A., Horie M., Cho Y., Behr E.R., Berul C., Blom N., Brugada J., Chiang C.E., Huikuri H., et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10:1932–1963. doi: 10.1016/j.hrthm.2013.05.014.
    1. Chen Q., Kirsch G.E., Zhang D., Brugada R., Brugada J., Brugada P., Potenza D., Moya A., Borggrefe M., Breithardt G., et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–296.
    1. Brugada P., Brugada J., Roy D. Brugada syndrome 1992-2012: 20 years of scientific excitement, and more. Eur. Heart J. 2013;34:3610–3615. doi: 10.1093/eurheartj/eht113.
    1. Watanabe H., Koopmann T.T., Le Scouarnec S., Yang T., Ingram C.R., Schott J.J., Demolombe S., Probst V., Anselme F., Escande D., et al. Sodium channel beta1 subunit mutations associated with brugada syndrome and cardiac conduction disease in humans. J. Clin. Investig. 2008;118:2260–2268.
    1. Riuro H., Beltran-Alvarez P., Tarradas A., Selga E., Campuzano O., Verges M., Pagans S., Iglesias A., Brugada J., Brugada P., et al. A missense mutation in the sodium channel beta2 subunit reveals SCN2B as a new candidate gene for brugada syndrome. Hum. Mutat. 2013;34:961–966. doi: 10.1002/humu.22328.
    1. Hu D., Barajas-Martinez H., Burashnikov E., Springer M., Wu Y., Varro A., Pfeiffer R., Koopmann T.T., Cordeiro J.M., Guerchicoff A., et al. A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ. Cardiovasc. Genet. 2009;2:270–278. doi: 10.1161/CIRCGENETICS.108.829192.
    1. Hu D., Barajas-Martinez H., Pfeiffer R., Dezi F., Pfeiffer J., Buch T., Betzenhauser M.J., Belardinelli L., Kahlig K.M., Rajamani S., et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J. Am. Coll. Cardiol. 2014;64:66–79. doi: 10.1016/j.jacc.2014.04.032.
    1. Behr E.R., Savio-Galimberti E., Barc J., Holst A.G., Petropoulou E., Prins B.P., Jabbari J., Torchio M., Berthet M., Mizusawa Y., et al. Role of common and rare variants in SCN10A: Results from the Brugada syndrome qrs locus gene discovery collaborative study. Cardiovasc. Res. 2015;106:520–529. doi: 10.1093/cvr/cvv042.
    1. Le Scouarnec S., Karakachoff M., Gourraud J.B., Lindenbaum P., Bonnaud S., Portero V., Duboscq-Bidot L., Daumy X., Simonet F., Teusan R., et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum. Mol. Genet. 2015;24:2757–2763. doi: 10.1093/hmg/ddv036.
    1. Fukuyama M., Ohno S., Makiyama T., Horie M. Novel SCN10A variants associated with Brugada syndrome. Europace. 2016;18:905–911. doi: 10.1093/europace/euv078.
    1. Antzelevitch C., Pollevick G.D., Cordeiro J.M., Casis O., Sanguinetti M.C., Aizawa Y., Guerchicoff A., Pfeiffer R., Oliva A., Wollnik B., et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by st-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–449. doi: 10.1161/CIRCULATIONAHA.106.668392.
    1. Cordeiro J.M., Marieb M., Pfeiffer R., Calloe K., Burashnikov E., Antzelevitch C. Accelerated inactivation of the l-type calcium current due to a mutation in CACNB2B underlies Brugada syndrome. J. Mol. Cell Cardiol. 2009;46:695–703. doi: 10.1016/j.yjmcc.2009.01.014.
    1. Burashnikov E., Pfeiffer R., Barajas-Martinez H., Delpon E., Hu D., Desai M., Borggrefe M., Haissaguerre M., Kanter R., Pollevick G.D., et al. Mutations in the cardiac l-type calcium channel associated with inherited j-wave syndromes and sudden cardiac death. Heart Rhythm. 2010;7:1872–1882. doi: 10.1016/j.hrthm.2010.08.026.
    1. Giudicessi J.R., Ye D., Tester D.J., Crotti L., Mugione A., Nesterenko V.V., Albertson R.M., Antzelevitch C., Schwartz P.J., Ackerman M.J. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm. 2011;8:1024–1032. doi: 10.1016/j.hrthm.2011.02.021.
    1. Perrin M.J., Adler A., Green S., Al-Zoughool F., Doroshenko P., Orr N., Uppal S., Healey J.S., Birnie D., Sanatani S., et al. Evaluation of genes encoding for the transient outward current (Ito) identifies the KCND2 gene as a cause of J-wave syndrome associated with sudden cardiac death. Circ. Cardiovasc. Genet. 2014;7:782–789. doi: 10.1161/CIRCGENETICS.114.000623.
    1. Delpon E., Cordeiro J.M., Nunez L., Thomsen P.E., Guerchicoff A., Pollevick G.D., Wu Y., Kanters J.K., Larsen C.T., Hofman-Bang J., et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ. Arrhythm. Electrophysiol. 2008;1:209–218. doi: 10.1161/CIRCEP.107.748103.
    1. Ohno S., Zankov D.P., Ding W.G., Itoh H., Makiyama T., Doi T., Shizuta S., Hattori T., Miyamoto A., Naiki N., et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circ. Arrhythm. Electrophysiol. 2011;4:352–361. doi: 10.1161/CIRCEP.110.959619.
    1. Barajas-Martinez H., Hu D., Ferrer T., Onetti C.G., Wu Y., Burashnikov E., Boyle M., Surman T., Urrutia J., Veltmann C., et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422l missense mutation in KCNJ8. Heart Rhythm. 2012;9:548–555. doi: 10.1016/j.hrthm.2011.10.035.
    1. Kawamura M., Ozawa T., Yao T., Ashihara T., Sugimoto Y., Yagi T., Itoh H., Ito M., Makiyama T., Horie M. Dynamic change in ST-segment and spontaneous occurrence of ventricular fibrillation in Brugada syndrome with a novel nonsense mutation in the SCN5A gene during long-term follow-up. Circ. J. 2009;73:584–588. doi: 10.1253/circj.CJ-08-0142.
    1. Wang Q., Ohno S., Ding W.G., Fukuyama M., Miyamoto A., Itoh H., Makiyama T., Wu J., Bai J., Hasegawa K., et al. Gain-of-function KCNH2 mutations in patients with Brugada syndrome. J. Cardiovasc. Electrophysiol. 2014;25:522–530. doi: 10.1111/jce.12361.
    1. Kattygnarath D., Maugenre S., Neyroud N., Balse E., Ichai C., Denjoy I., Dilanian G., Martins R.P., Fressart V., Berthet M., et al. Mog1: A new susceptibility gene for Brugada syndrome. Circ. Cardiovasc. Genet. 2011;4:261–268. doi: 10.1161/CIRCGENETICS.110.959130.
    1. Shy D., Gillet L., Abriel H. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: The multiple pool model. Biochim. Biophys. Acta. 2013;1833:886–894. doi: 10.1016/j.bbamcr.2012.10.026.
    1. London B., Michalec M., Mehdi H., Zhu X., Kerchner L., Sanyal S., Viswanathan P.C., Pfahnl A.E., Shang L.L., Madhusudanan M., et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (Gpd1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116:2260–2268. doi: 10.1161/CIRCULATIONAHA.107.703330.
    1. Ishikawa T., Sato A., Marcou C.A., Tester D.J., Ackerman M.J., Crotti L., Schwartz P.J., On Y.K., Park J.E., Nakamura K., et al. A novel disease gene for Brugada syndrome: Sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ. Arrhythm. Electrophysiol. 2012;5:1098–1107. doi: 10.1161/CIRCEP.111.969972.
    1. Cerrone M., Delmar M. Desmosomes and the sodium channel complex: Implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc. Med. 2014;24:184–190. doi: 10.1016/j.tcm.2014.02.001.
    1. Cerrone M., Lin X., Zhang M., Agullo-Pascual E., Pfenniger A., Chkourko Gusky H., Novelli V., Kim C., Tirasawadichai T., Judge D.P., et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129:1092–1103. doi: 10.1161/CIRCULATIONAHA.113.003077.
    1. Liu H., Chatel S., Simard C., Syam N., Salle L., Probst V., Morel J., Millat G., Lopez M., Abriel H., et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the trpm4 channel. PLoS ONE. 2013;8:e54131. doi: 10.1371/journal.pone.0054131.
    1. Hennessey J.A., Marcou C.A., Wang C., Wei E.Q., Tester D.J., Torchio M., Dagradi F., Crotti L., Schwartz P.J., Ackerman M.J., et al. FGF12 is a candidate Brugada syndrome locus. Heart Rhythm. 2013;10:1886–1894. doi: 10.1016/j.hrthm.2013.09.064.
    1. Bezzina C.R., Barc J., Mizusawa Y., Remme C.A., Gourraud J.B., Simonet F., Verkerk A.O., Schwartz P.J., Crotti L., Dagradi F., et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 2013;45:1044–1049. doi: 10.1038/ng.2712.
    1. Ueda K., Hirano Y., Higashiuesato Y., Aizawa Y., Hayashi T., Inagaki N., Tana T., Ohya Y., Takishita S., Muratani H., et al. Role of HCN4 channel in preventing ventricular arrhythmia. J. Hum. Genet. 2009;54:115–121. doi: 10.1038/jhg.2008.16.
    1. Boczek N.J., Ye D., Johnson E.K., Wang W., Crotti L., Tester D.J., Dagradi F., Mizusawa Y., Torchio M., Alders M., et al. Characterization of SEMA3A-encoded semaphorin as a naturally occurring kv4.3 protein inhibitor and its contribution to Brugada syndrome. Circ. Res. 2014;115:460–469. doi: 10.1161/CIRCRESAHA.115.303657.
    1. Eastaugh L.J., James P.A., Phelan D.G., Davis A.M. Brugada syndrome caused by a large deletion in SCN5A only detected by multiplex ligation-dependent probe amplification. J. Cardiovasc. Electrophysiol. 2011;22:1073–1076. doi: 10.1111/j.1540-8167.2010.02003.x.
    1. Mademont-Soler I., Pinsach-Abuin M.L., Riuro H., Mates J., Perez-Serra A., Coll M., Porres J.M., Del Olmo B., Iglesias A., Selga E., et al. Large genomic imbalances in Brugada syndrome. PLoS ONE. 2016;11:e0163514. doi: 10.1371/journal.pone.0163514.
    1. Garcia-Molina E., Lacunza J., Ruiz-Espejo F., Sabater M., Garcia-Alberola A., Gimeno J.R., Canizares F., Garcia A., Martinez P., Valdes M., et al. A study of the SCN5A gene in a cohort of 76 patients with Brugada syndrome. Clin. Genet. 2013;83:530–538. doi: 10.1111/cge.12017.
    1. Koopmann T.T., Beekman L., Alders M., Meregalli P.G., Mannens M.M., Moorman A.F., Wilde A.A., Bezzina C.R. Exclusion of multiple candidate genes and large genomic rearrangements in SCN5A in a dutch Brugada syndrome cohort. Heart Rhythm. 2007;4:752–755. doi: 10.1016/j.hrthm.2007.02.021.
    1. Selga E., Campuzano O., Pinsach-Abuin M.L., Perez-Serra A., Mademont-Soler I., Riuro H., Pico F., Coll M., Iglesias A., Pagans S., et al. Comprehensive genetic characterization of a spanish Brugada syndrome cohort. PLoS ONE. 2015;10:e0132888. doi: 10.1371/journal.pone.0132888.
    1. Kapplinger J.D., Tester D.J., Alders M., Benito B., Berthet M., Brugada J., Brugada P., Fressart V., Guerchicoff A., Harris-Kerr C., et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46. doi: 10.1016/j.hrthm.2009.09.069.
    1. Wilde A.A., Postema P.G., Di Diego J.M., Viskin S., Morita H., Fish J.M., Antzelevitch C. The pathophysiological mechanism underlying Brugada syndrome: Depolarization versus repolarization. J. Mol. Cell Cardiol. 2010;49:543–553. doi: 10.1016/j.yjmcc.2010.07.012.
    1. Priori S.G., Blomstrom-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P.M., Fitzsimons D., Hatala R., Hindricks G., et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Rev. Esp. Cardiol. 2016 doi: 10.1016/j.rec.2016.01.001.
    1. Jervell A., Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval and sudden death. Am. Heart J. 1957;54:59–68. doi: 10.1016/0002-8703(57)90079-0.
    1. Levine S.A., Woodworth C.R. Congenital deaf-mutism, prolonged qt interval, syncopal attacks and sudden death. N. Engl. J. Med. 1958;259:412–417. doi: 10.1056/NEJM195808282590902.
    1. Romano C., Gemme G., Pongiglione R. Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. (presentation of 1st case in italian pediatric literature) Clin. Pediatr. 1963;45:656–683.
    1. Ward O.C. A new familial cardiac syndrome in children. J. Ir. Med. Assoc. 1964;54:103–106.
    1. Schwartz P.J., Periti M., Malliani A. The long QT syndrome. Am. Heart J. 1975;89:378–390. doi: 10.1016/0002-8703(75)90089-7.
    1. Kaufman E.S. Arrhythmic risk in congenital long QT syndrome. J. Electrocardiol. 2011;44:645–649. doi: 10.1016/j.jelectrocard.2011.07.023.
    1. Schwartz P.J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G., Gabbarini F., Goulene K., Insolia R., Mannarino S., et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–1767. doi: 10.1161/CIRCULATIONAHA.109.863209.
    1. Rautaharju P.M., Zhou S.H., Wong S., Calhoun H.P., Berenson G.S., Prineas R., Davignon A. Sex differences in the evolution of the electrocardiographic qt interval with age. Can. J. Cardiol. 1992;8:690–695.
    1. Hashiba K. Sex differences in phenotypic manifestation and gene transmission in the romano-ward syndrome. Ann. N. Y. Acad. Sci. 1992;644:142–156. doi: 10.1111/j.1749-6632.1992.tb31008.x.
    1. Lehmann M.H., Timothy K.W., Frankovich D., Fromm B.S., Keating M., Locati E.H., Taggart R.T., Towbin J.A., Moss A.J., Schwartz P.J., et al. Age-gender influence on the rate-corrected qt interval and the qt-heart rate relation in families with genotypically characterized long QT syndrome. J. Am. Coll. Cardiol. 1997;29:93–99. doi: 10.1016/S0735-1097(96)00454-8.
    1. Rodriguez I., Kilborn M.J., Liu X.K., Pezzullo J.C., Woosley R.L. Drug-induced qt prolongation in women during the menstrual cycle. JAMA. 2001;285:1322–1326. doi: 10.1001/jama.285.10.1322.
    1. Locati E.H., Zareba W., Moss A.J., Schwartz P.J., Vincent G.M., Lehmann M.H., Towbin J.A., Priori S.G., Napolitano C., Robinson J.L., et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: Findings from the international lqts registry. Circulation. 1998;97:2237–2244. doi: 10.1161/01.CIR.97.22.2237.
    1. Seth R., Moss A.J., McNitt S., Zareba W., Andrews M.L., Qi M., Robinson J.L., Goldenberg I., Ackerman M.J., Benhorin J., et al. Long QT syndrome and pregnancy. J. Am. Coll Cardiol. 2007;49:1092–1098. doi: 10.1016/j.jacc.2006.09.054.
    1. Makkar R.R., Fromm B.S., Steinman R.T., Meissner M.D., Lehmann M.H. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA. 1993;270:2590–2597. doi: 10.1001/jama.1993.03510210076031.
    1. Lehmann M.H., Hardy S., Archibald D., quart B., MacNeil D.J. Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation. 1996;94:2535–2541. doi: 10.1161/01.CIR.94.10.2535.
    1. Pratt C.M., Waldo A.L., Camm A.J. Can antiarrhythmic drugs survive survival trials? Am. J. Cardiol. 1998;81:24D–34D. doi: 10.1016/S0002-9149(98)00150-7.
    1. Medeiros-Domingo A., Iturralde-Torres P., Ackerman M.J. Clinical and genetic characteristics of long QT syndrome. Rev. Esp. Cardiol. 2007;60:739–752. doi: 10.1157/13108280.
    1. Roden D.M. Cellular basis of drug-induced torsades de pointes. Br. J. Pharmacol. 2008;154:1502–1507. doi: 10.1038/bjp.2008.238.
    1. Roden D.M. Clinical practice. Long-QT syndrome. N. Engl. J. Med. 2008;358:169–176. doi: 10.1056/NEJMcp0706513.
    1. Morita H., Wu J., Zipes D.P. The QT syndromes: Long and short. Lancet. 2008;372:750–763. doi: 10.1016/S0140-6736(08)61307-0.
    1. Goldenberg I., Zareba W., Moss A.J. Long QT syndrome. Curr. Probl. Cardiol. 2008;33:629–694. doi: 10.1016/j.cpcardiol.2008.07.002.
    1. Vohra J. The long QT syndrome. Heart Lung Circ. 2007;16:S5–S12. doi: 10.1016/j.hlc.2007.05.008.
    1. Brink P.A., Crotti L., Corfield V., Goosen A., Durrheim G., Hedley P., Heradien M., Geldenhuys G., Vanoli E., Bacchini S., et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation. 2005;112:2602–2610. doi: 10.1161/CIRCULATIONAHA.105.572453.
    1. Priori S.G., Napolitano C., Vicentini A. Inherited arrhythmia syndromes: Applying the molecular biology and genetic to the clinical management. J. Interv. Card. Electrophysiol. 2003;9:93–101. doi: 10.1023/A:1026255617913.
    1. Moss A.J., Schwartz P.J., Crampton R.S., Tzivoni D., Locati E.H., MacCluer J., Hall W.J., Weitkamp L., Vincent G.M., Garson A., Jr., et al. The long qt syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84:1136–1144. doi: 10.1161/01.CIR.84.3.1136.
    1. Schwartz P.J. Idiopathic long QT syndrome: Progress and questions. Am. Heart. J. 1985;109:399–411. doi: 10.1016/0002-8703(85)90626-X.
    1. Schwartz P.J., Moss A.J., Vincent G.M., Crampton R.S. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88:782–784. doi: 10.1161/01.CIR.88.2.782.
    1. Schwartz P.J. The congenital long QT syndromes from genotype to phenotype: Clinical implications. J. Intern. Med. 2006;259:39–47. doi: 10.1111/j.1365-2796.2005.01583.x.
    1. Schwartz P.J. Practical issues in the management of the long qt syndrome: Focus on diagnosis and therapy. Swiss Med. Wkly. 2013 doi: 10.4414/smw.2013.13843.
    1. Zhang L., Timothy K.W., Vincent G.M., Lehmann M.H., Fox J., Giuli L.C., Shen J., Splawski I., Priori S.G., Compton S.J., et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: Ecg findings identify genotypes. Circulation. 2000;102:2849–2855. doi: 10.1161/01.CIR.102.23.2849.
    1. Moss A.J., Zareba W., Benhorin J., Locati E.H., Hall W.J., Robinson J.L., Schwartz P.J., Towbin J.A., Vincent G.M., Lehmann M.H. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation. 1995;92:2929–2934. doi: 10.1161/01.CIR.92.10.2929.
    1. Zhang L., Benson D.W., Tristani-Firouzi M., Ptacek L.J., Tawil R., Schwartz P.J., George A.L., Horie M., Andelfinger G., Snow G.L., et al. Electrocardiographic features in andersen-tawil syndrome patients with kcnj2 mutations: Characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111:2720–2726. doi: 10.1161/CIRCULATIONAHA.104.472498.
    1. Lupoglazoff J.M., Denjoy I., Villain E., Fressart V., Simon F., Bozio A., Berthet M., Benammar N., Hainque B., Guicheney P. Long QT syndrome in neonates: Conduction disorders associated with herg mutations and sinus bradycardia with KCNQ1 mutations. J. Am. Coll. Cardiol. 2004;43:826–830. doi: 10.1016/j.jacc.2003.09.049.
    1. Donger C., Denjoy I., Berthet M., Neyroud N., Cruaud C., Bennaceur M., Chivoret G., Schwartz K., Coumel P., Guicheney P. KVLQT1 c-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96:2778–2781. doi: 10.1161/01.CIR.96.9.2778.
    1. Paulussen A.D., Gilissen R.A., Armstrong M., Doevendans P.A., Verhasselt P., Smeets H.J., Schulze-Bahr E., Haverkamp W., Breithardt G., Cohen N., et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long qt syndrome patients. J. Mol. Med. 2004;82:182–188. doi: 10.1007/s00109-003-0522-z.
    1. Schwartz P.J., Malliani A. Electrical alternation of the T-wave: Clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am. Heart J. 1975;89:45–50. doi: 10.1016/0002-8703(75)90008-3.
    1. Keating M., Atkinson D., Dunn C., Timothy K., Vincent G.M., Leppert M. Linkage of a cardiac arrhythmia, the long QT syndrome, and the harvey RAS-1 gene. Science. 1991;252:704–706. doi: 10.1126/science.1673802.
    1. Towbin J.A. Molecular genetic aspects of the romano-ward long QT syndrome. Tex. Heart Inst. J. 1994;21:42–47.
    1. Towbin J.A., Li H., Taggart R.T., Lehmann M.H., Schwartz P.J., Satler C.A., Ayyagari R., Robinson J.L., Moss A., Hejtmancik J.F. Evidence of genetic heterogeneity in romano-ward long QT syndrome. Analysis of 23 families. Circulation. 1994;90:2635–2644. doi: 10.1161/01.CIR.90.6.2635.
    1. Jiang C., Atkinson D., Towbin J.A., Splawski I., Lehmann M.H., Li H., Timothy K., Taggart R.T., Schwartz P.J., Vincent G.M., et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat. Genet. 1994;8:141–147. doi: 10.1038/ng1094-141.
    1. Kapplinger J.D., Tester D.J., Salisbury B.A., Carr J.L., Harris-Kerr C., Pollevick G.D., Wilde A.A., Ackerman M.J. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the familion long qt syndrome genetic test. Heart Rhythm. 2009;6:1297–1303. doi: 10.1016/j.hrthm.2009.05.021.
    1. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384:78–80. doi: 10.1038/384078a0.
    1. Bellocq C., van Ginneken A.C., Bezzina C.R., Alders M., Escande D., Mannens M.M., Baro I., Wilde A.A. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–2397. doi: 10.1161/01.CIR.0000130409.72142.FE.
    1. Wang Q., Curran M.E., Splawski I., Burn T.C., Millholland J.M., VanRaay T.J., Shen J., Timothy K.W., Vincent G.M., de Jager T., et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 1996;12:17–23. doi: 10.1038/ng0196-17.
    1. Curran M.E., Splawski I., Timothy K.W., Vincent G.M., Green E.D., Keating M.T. A molecular basis for cardiac arrhythmia: Herg mutations cause long QT syndrome. Cell. 1995;80:795–803. doi: 10.1016/0092-8674(95)90358-5.
    1. Wang Q., Shen J., Splawski I., Atkinson D., Li Z., Robinson J.L., Moss A.J., Towbin J.A., Keating M.T. SCN5A mutations associated with an inherited cardiac arrhythmia, long qt syndrome. Cell. 1995;80:805–811. doi: 10.1016/0092-8674(95)90359-3.
    1. Mohler P.J., Schott J.J., Gramolini A.O., Dilly K.W., Guatimosim S., duBell W.H., Song L.S., Haurogne K., Kyndt F., Ali M.E., et al. Ankyrin-b mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–639. doi: 10.1038/nature01335.
    1. Splawski I., Tristani-Firouzi M., Lehmann M.H., Sanguinetti M.C., Keating M.T. Mutations in the hmink gene cause long QT syndrome and suppress iks function. Nat. Genet. 1997;17:338–340. doi: 10.1038/ng1197-338.
    1. Abbott G.W., Sesti F., Splawski I., Buck M.E., Lehmann M.H., Timothy K.W., Keating M.T., Goldstein S.A. MIRP1 forms IKR potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97:175–187. doi: 10.1016/S0092-8674(00)80728-X.
    1. Andersen E.D., Krasilnikoff P.A., Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies: A new syndrome? Acta Paediatr. Scand. 1971;60:559–564. doi: 10.1111/j.1651-2227.1971.tb06990.x.
    1. Tawil R., Ptacek L.J., Pavlakis S.G., DeVivo D.C., Penn A.S., Ozdemir C., Griggs R.C. Andersen’s syndrome: Potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann. Neurol. 1994;35:326–330. doi: 10.1002/ana.410350313.
    1. Boczek N.J., Best J.M., Tester D.J., Giudicessi J.R., Middha S., Evans J.M., Kamp T.J., Ackerman M.J. Exome sequencing and systems biology converge to identify novel mutations in the l-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ. Cardiovasc. Genet. 2013;6:279–289. doi: 10.1161/CIRCGENETICS.113.000138.
    1. Fukuyama M., Ohno S., Wang Q., Shirayama T., Itoh H., Horie M. Nonsense-mediated mrna decay due to a CACNA1C splicing mutation in a patient with Brugada syndrome. Heart Rhythm. 2014;11:629–634. doi: 10.1016/j.hrthm.2013.12.011.
    1. Splawski I., Timothy K.W., Sharpe L.M., Decher N., Kumar P., Bloise R., Napolitano C., Schwartz P.J., Joseph R.M., Condouris K., et al. Ca(v)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31. doi: 10.1016/j.cell.2004.09.011.
    1. Splawski I., Timothy K.W., Decher N., Kumar P., Sachse F.B., Beggs A.H., Sanguinetti M.C., Keating M.T. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl. Acad. Sci. USA. 2005;102:8089–8096. doi: 10.1073/pnas.0502506102.
    1. Boczek N.J., Miller E.M., Ye D., Nesterenko V.V., Tester D.J., Antzelevitch C., Czosek R.J., Ackerman M.J., Ware S.M. Novel timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm. 2015;12:211–219. doi: 10.1016/j.hrthm.2014.09.051.
    1. Vatta M., Ackerman M.J., Ye B., Makielski J.C., Ughanze E.E., Taylor E.W., Tester D.J., Balijepalli R.C., Foell J.D., Li Z., et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114:2104–2112. doi: 10.1161/CIRCULATIONAHA.106.635268.
    1. Medeiros-Domingo A., Kaku T., Tester D.J., Iturralde-Torres P., Itty A., Ye B., Valdivia C., Ueda K., Canizales-Quinteros S., Tusie-Luna M.T., et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116:134–142. doi: 10.1161/CIRCULATIONAHA.106.659086.
    1. Ueda K., Valdivia C., Medeiros-Domingo A., Tester D.J., Vatta M., Farrugia G., Ackerman M.J., Makielski J.C. Syntrophin mutation associated with long QT syndrome through activation of the nnos-SCN5A macromolecular complex. Proc. Natl. Acad. Sci. USA. 2008;105:9355–9360. doi: 10.1073/pnas.0801294105.
    1. Chen L., Marquardt M.L., Tester D.J., Sampson K.J., Ackerman M.J., Kass R.S. Mutation of an a-kinase-anchoring protein causes long-QT syndrome. Proc. Natl. Acad. Sci. USA. 2007;104:20990–20995. doi: 10.1073/pnas.0710527105.
    1. Chen M.X., Sandow S.L., Doceul V., Chen Y.H., Harper H., Hamilton B., Meadows H.J., Trezise D.J., Clare J.J. Improved functional expression of recombinant human ether-a-go-go (hERG) k+ channels by cultivation at reduced temperature. BMC Biotechnol. 2007 doi: 10.1186/1472-6750-7-93.
    1. Yang Y., Liang B., Liu J., Li J., Grunnet M., Olesen S.P., Rasmussen H.B., Ellinor P.T., Gao L., Lin X., et al. Identification of a KIR3.4 mutation in congenital long QT syndrome. Am. J. Hum. Genet. 2010;86:872–880. doi: 10.1016/j.ajhg.2010.04.017.
    1. Crotti L., Johnson C.N., Graf E., De Ferrari G.M., Cuneo B.F., Ovadia M., Papagiannis J., Feldkamp M.D., Rathi S.G., Kunic J.D., et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–1017. doi: 10.1161/CIRCULATIONAHA.112.001216.
    1. Makita N., Yagihara N., Crotti L., Johnson C.N., Beckmann B.M., Roh M.S., Shigemizu D., Lichtner P., Ishikawa T., Aiba T., et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ. Cardiovasc. Genet. 2014;7:466–474. doi: 10.1161/CIRCGENETICS.113.000459.
    1. Reed G.J., Boczek N.J., Etheridge S.P., Ackerman M.J. Calm3 mutation associated with long QT syndrome. Heart Rhythm. 2015;12:419–422. doi: 10.1016/j.hrthm.2014.10.035.
    1. Riuro H., Campuzano O., Arbelo E., Iglesias A., Batlle M., Perez-Villa F., Brugada J., Perez G.J., Scornik F.S., Brugada R. A missense mutation in the sodium channel beta1b subunit reveals SCN1B as a susceptibility gene underlying long qt syndrome. Heart Rhythm. 2014;11:1202–1209. doi: 10.1016/j.hrthm.2014.03.044.
    1. Kauferstein S., Kiehne N., Erkapic D., Schmidt J., Hamm C.W., Bratzke H., Pitschner H.F., Kuniss M., Neumann T. A novel mutation in the cardiac ryanodine receptor gene (RYR2) in a patient with an unequivocal lqts. Int. J. Cardiol. 2011;146:249–250. doi: 10.1016/j.ijcard.2010.10.062.
    1. Schwartz P.J., Spazzolini C., Crotti L., Bathen J., Amlie J.P., Timothy K., Shkolnikova M., Berul C.I., Bitner-Glindzicz M., Toivonen L., et al. The jervell and lange-nielsen syndrome: Natural history, molecular basis, and clinical outcome. Circulation. 2006;113:783–790. doi: 10.1161/CIRCULATIONAHA.105.592899.
    1. Gussak I., Brugada P., Brugada J., Wright R.S., Kopecky S.L., Chaitman B.R., Bjerregaard P. Idiopathic short QT interval: A new clinical syndrome? Cardiology. 2000;94:99–102. doi: 10.1159/000047299.
    1. Gaita F., Giustetto C., Bianchi F., Wolpert C., Schimpf R., Riccardi R., Grossi S., Richiardi E., Borggrefe M. Short QT syndrome: A familial cause of sudden death. Circulation. 2003;108:965–970. doi: 10.1161/01.CIR.0000085071.28695.C4.
    1. Mazzanti A., O’Rourke S., Ng K., Miceli C., Borio G., Curcio A., Esposito F., Napolitano C., Priori S.G. The usual suspects in sudden cardiac death of the young: A focus on inherited arrhythmogenic diseases. Expert Rev. Cardiovasc. Ther. 2014;12:499–519. doi: 10.1586/14779072.2014.894884.
    1. Kobza R., Roos M., Niggli B., Abacherli R., Lupi G.A., Frey F., Schmid J.J., Erne P. Prevalence of long and short QT in a young population of 41,767 predominantly male swiss conscripts. Heart Rhythm. 2009;6:652–657. doi: 10.1016/j.hrthm.2009.01.009.
    1. Funada A., Hayashi K., Ino H., Fujino N., Uchiyama K., Sakata K., Masuta E., Sakamoto Y., Tsubokawa T., Yamagishi M. Assessment of qt intervals and prevalence of short QT syndrome in japan. Clin. Cardiol. 2008;31:270–274. doi: 10.1002/clc.20208.
    1. Anttonen O., Junttila M.J., Rissanen H., Reunanen A., Viitasalo M., Huikuri H.V. Prevalence and prognostic significance of short qt interval in a middle-aged finnish population. Circulation. 2007;116:714–720. doi: 10.1161/CIRCULATIONAHA.106.676551.
    1. Rudic B., Schimpf R., Borggrefe M. Short qt syndrome—Review of diagnosis and treatment. Arrhythm. Electrophysiol. Rev. 2014;3:76–79. doi: 10.15420/aer.2014.3.2.76.
    1. Miyamoto A., Hayashi H., Yoshino T., Kawaguchi T., Taniguchi A., Itoh H., Sugimoto Y., Itoh M., Makiyama T., Xue J.Q., et al. Clinical and electrocardiographic characteristics of patients with short qt interval in a large hospital-based population. Heart Rhythm. 2012;9:66–74. doi: 10.1016/j.hrthm.2011.08.016.
    1. Giustetto C., Di Monte F., Wolpert C., Borggrefe M., Schimpf R., Sbragia P., Leone G., Maury P., Anttonen O., Haissaguerre M., et al. Short qt syndrome: Clinical findings and diagnostic-therapeutic implications. Eur. Heart J. 2006;27:2440–2447. doi: 10.1093/eurheartj/ehl185.
    1. Nierenberg D.W. Spironolactone and metabolic acidosis. Ann. Intern. Med. 1979;91:321–322. doi: 10.7326/0003-4819-91-2-321_3.
    1. Holbrook M., Malik M., Shah R.R., Valentin J.P. Drug induced shortening of the QT/QTC interval: An emerging safety issue warranting further modelling and evaluation in drug research and development? J. Pharmacol. Toxicol. Methods. 2009;59:21–28. doi: 10.1016/j.vascn.2008.09.001.
    1. Viskin S., Justo D., Zeltser D. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 2004;350:2618–2621.
    1. Viskin S., Zeltser D., Ish-Shalom M., Katz A., Glikson M., Justo D., Tekes-Manova D., Belhassen B. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of qt intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm. 2004;1:587–591. doi: 10.1016/j.hrthm.2004.07.010.
    1. Schimpf R., Wolpert C., Gaita F., Giustetto C., Borggrefe M. Short QT syndrome. Cardiovasc. Res. 2005;67:357–366. doi: 10.1016/j.cardiores.2005.03.026.
    1. Schimpf R., Borggrefe M., Wolpert C. Clinical and molecular genetics of the short QT syndrome. Curr. Opin. Cardiol. 2008;23:192–198. doi: 10.1097/HCO.0b013e3282fbf756.
    1. Tulumen E., Giustetto C., Wolpert C., Maury P., Anttonen O., Probst V., Blanc J.J., Sbragia P., Scrocco C., Rudic B., et al. PQ segment depression in patients with short QT syndrome: A novel marker for diagnosing short qt syndrome? Heart Rhythm. 2014;11:1024–1030. doi: 10.1016/j.hrthm.2014.02.024.
    1. Borggrefe M., Wolpert C., Antzelevitch C., Veltmann C., Giustetto C., Gaita F., Schimpf R. Short QT syndrome. Genotype-phenotype correlations. J. Electrocardiol. 2005;38:75–80. doi: 10.1016/j.jelectrocard.2005.06.009.
    1. Giustetto C., Schimpf R., Mazzanti A., Scrocco C., Maury P., Anttonen O., Probst V., Blanc J.J., Sbragia P., Dalmasso P., et al. Long-term follow-up of patients with short QT syndrome. J. Am. Coll. Cardiol. 2011;58:587–595. doi: 10.1016/j.jacc.2011.03.038.
    1. Gollob M.H., Redpath C.J., Roberts J.D. The short QT syndrome: Proposed diagnostic criteria. J. Am. Coll. Cardiol. 2011;57:802–812. doi: 10.1016/j.jacc.2010.09.048.
    1. Brugada R., Hong K., Dumaine R., Cordeiro J., Gaita F., Borggrefe M., Menendez T.M., Brugada J., Pollevick G.D., Wolpert C., et al. Sudden death associated with short-QT syndrome linked to mutations in herg. Circulation. 2004;109:30–35. doi: 10.1161/01.CIR.0000109482.92774.3A.
    1. Priori S.G., Pandit S.V., Rivolta I., Berenfeld O., Ronchetti E., Dhamoon A., Napolitano C., Anumonwo J., di Barletta M.R., Gudapakkam S., et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 2005;96:800–807. doi: 10.1161/01.RES.0000162101.76263.8c.
    1. Templin C., Ghadri J.R., Rougier J.S., Baumer A., Kaplan V., Albesa M., Sticht H., Rauch A., Puleo C., Hu D., et al. Identification of a novel loss-of-function calcium channel gene mutation in short qt syndrome (SQTS6) Eur. Heart J. 2011;32:1077–1088. doi: 10.1093/eurheartj/ehr076.
    1. Berg K.J. Multifocal ventricular extrasytoles with adams-stokes syndrome in siblings. Am. Heart J. 1960;60:965–970. doi: 10.1016/0002-8703(60)90128-9.
    1. Reid D.S., Tynan M., Braidwood L., Fitzgerald G.R. Bidirectional tachycardia in a child. A study using his bundle electrography. Br. Heart J. 1975;37:339–344. doi: 10.1136/hrt.37.3.339.
    1. Leenhardt A., Lucet V., Denjoy I., Grau F., Ngoc D.D., Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–1519. doi: 10.1161/01.CIR.91.5.1512.
    1. Lieve K.V., van der Werf C., Wilde A.A. Catecholaminergic polymorphic ventricular tachycardia. Circ. J. 2016;80:1285–1291. doi: 10.1253/circj.CJ-16-0326.
    1. Napolitano C., Priori S.G. Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2007;4:675–678. doi: 10.1016/j.hrthm.2006.12.048.
    1. Priori S.G., Napolitano C., Memmi M., Colombi B., Drago F., Gasparini M., DeSimone L., Coltorti F., Bloise R., Keegan R., et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74. doi: 10.1161/01.CIR.0000020013.73106.D8.
    1. Lehnart S.E., Wehrens X.H., Laitinen P.J., Reiken S.R., Deng S.X., Cheng Z., Landry D.W., Kontula K., Swan H., Marks A.R. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation. 2004;109:3208–3214. doi: 10.1161/.
    1. Refaat M.M., Hassanieh S., Scheinman M. Catecholaminergic polymorphic ventricular tachycardia. Card. Electrophysiol. Clin. 2016;8:233–237. doi: 10.1016/j.ccep.2015.10.035.
    1. Terentyev D., Nori A., Santoro M., Viatchenko-Karpinski S., Kubalova Z., Gyorke I., Terentyeva R., Vedamoorthyrao S., Blom N.A., Valle G., et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ. Res. 2006;98:1151–1158. doi: 10.1161/01.RES.0000220647.93982.08.
    1. Priori S.G., Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J. Clin. Investig. 2005;115:2033–2038. doi: 10.1172/JCI25664.
    1. Postma A.V., Denjoy I., Kamblock J., Alders M., Lupoglazoff J.M., Vaksmann G., Dubosq-Bidot L., Sebillon P., Mannens M.M., Guicheney P., et al. Catecholaminergic polymorphic ventricular tachycardia: Ryr2 mutations, bradycardia, and follow up of the patients. J. Med. Genet. 2005;42:863–870. doi: 10.1136/jmg.2004.028993.
    1. Aizawa Y., Komura S., Okada S., Chinushi M., Morita H., Ohe T. Distinct U wave changes in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) Int. Heart J. 2006;47:381–389. doi: 10.1536/ihj.47.381.
    1. Refaat M.M., Hotait M., Tseng Z.H. Utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification. Ann. Noninvasive Electrocardiol. 2014;19:311–318. doi: 10.1111/anec.12191.
    1. Napolitano C., Priori S.G., Bloise R. Catecholaminergic polymorphic ventricular tachycardia. In: Pagon R.A., Adam M.P., Ardinger H.H., Wallace S.E., Amemiya A., Bean L.J.H., Bird T.D., Ledbetter N., Mefford H.C., Smith R.J.H., et al., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993.
    1. Liu N., Ruan Y., Priori S.G. Catecholaminergic polymorphic ventricular tachycardia. Prog. Cardiovasc. Dis. 2008;51:23–30. doi: 10.1016/j.pcad.2007.10.005.
    1. Priori S.G., Napolitano C., Tiso N., Memmi M., Vignati G., Bloise R., Sorrentino V., Danieli G.A. Mutations in the cardiac ryanodine receptor gene (HRYR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200. doi: 10.1161/01.CIR.103.2.196.
    1. Lahat H., Pras E., Olender T., Avidan N., Ben-Asher E., Man O., Levy-Nissenbaum E., Khoury A., Lorber A., Goldman B., et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in bedouin families from israel. Am. J. Hum. Genet. 2001;69:1378–1384. doi: 10.1086/324565.
    1. Postma A.V., Denjoy I., Hoorntje T.M., Lupoglazoff J.M., Da Costa A., Sebillon P., Mannens M.M., Wilde A.A., Guicheney P. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 2002;91:e21–e26. doi: 10.1161/01.RES.0000038886.18992.6B.
    1. Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J. Arrhythm. 2016;32:344–351. doi: 10.1016/j.joa.2015.09.008.
    1. Nyegaard M., Overgaard M.T., Sondergaard M.T., Vranas M., Behr E.R., Hildebrandt L.L., Lund J., Hedley P.L., Camm A.J., Wettrell G., et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am. J. Hum. Genet. 2012;91:703–712. doi: 10.1016/j.ajhg.2012.08.015.
    1. Gomez-Hurtado N., Boczek N.J., Kryshtal D.O., Johnson C.N., Sun J., Nitu F.R., Cornea R.L., Chazin W.J., Calvert M.L., Tester D.J., et al. Novel CPVT-associated calmodulin mutation in CALM3 (CALM3-A103V) activates arrhythmogenic ca waves and sparks. Circ. Arrhythm. Electrophysiol. 2016 doi: 10.1161/CIRCEP.116.004161.
    1. Roux-Buisson N., Cacheux M., Fourest-Lieuvin A., Fauconnier J., Brocard J., Denjoy I., Durand P., Guicheney P., Kyndt F., Leenhardt A., et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 2012;21:2759–2767.
    1. Vega A.L., Tester D.J., Ackerman M.J., Makielski J.C. Protein kinase a-dependent biophysical phenotype for V227F-KCNJ2 mutation in catecholaminergic polymorphic ventricular tachycardia. Circ. Arrhythm. Electrophysiol. 2009;2:540–547. doi: 10.1161/CIRCEP.109.872309.
    1. Mohler P.J., Splawski I., Napolitano C., Bottelli G., Sharpe L., Timothy K., Priori S.G., Keating M.T., Bennett V. A cardiac arrhythmia syndrome caused by loss of ankyrin-b function. Proc. Natl. Acad. Sci. USA. 2004;101:9137–9142. doi: 10.1073/pnas.0402546101.
    1. Bhuiyan Z.A., Hamdan M.A., Shamsi E.T., Postma A.V., Mannens M.M., Wilde A.A., Al-Gazali L. A novel early onset lethal form of catecholaminergic polymorphic ventricular tachycardia maps to chromosome 7p14-p22. J. Cardiovasc. Electrophysiol. 2007;18:1060–1066. doi: 10.1111/j.1540-8167.2007.00913.x.

Source: PubMed

3
Suscribir