Effects of the Fourth Ventricle Compression in the Regulation of the Autonomic Nervous System: A Randomized Control Trial

Ana Paula Cardoso-de-Mello-E-Mello-Ribeiro, Cleofás Rodríguez-Blanco, Inmaculada Riquelme-Agulló, Alberto Marcos Heredia-Rizo, François Ricard, Ángel Oliva-Pascual-Vaca, Ana Paula Cardoso-de-Mello-E-Mello-Ribeiro, Cleofás Rodríguez-Blanco, Inmaculada Riquelme-Agulló, Alberto Marcos Heredia-Rizo, François Ricard, Ángel Oliva-Pascual-Vaca

Abstract

Introduction. Dysfunction of the autonomic nervous system is an important factor in the development of chronic pain. Fourth ventricle compression (CV-4) has been shown to influence autonomic activity. Nevertheless, the physiological mechanisms behind these effects remain unclear. Objectives. This study is aimed at evaluating the effects of fourth ventricle compression on the autonomic nervous system. Methods. Forty healthy adults were randomly assigned to an intervention group, on whom CV-4 was performed, or to a control group, who received a placebo intervention (nontherapeutic touch on the occipital bone). In both groups, plasmatic catecholamine levels, blood pressure, and heart rate were measured before and immediately after the intervention. Results. No effects related to the intervention were found. Although a reduction of norepinephrine, systolic blood pressure, and heart rate was found after the intervention, it was not exclusive to the intervention group. In fact, only the control group showed an increment of dopamine levels after intervention. Conclusion. Fourth ventricle compression seems not to have any effect in plasmatic catecholamine levels, blood pressure, or heart rate. Further studies are needed to clarify the CV-4 physiologic mechanisms and clinical efficacy in autonomic regulation and pain treatment.

Figures

Figure 1
Figure 1
Physiotherapist's hand position during the procedure. (a) CV-4 technique, (b) placebo technique.

References

    1. Hallman D. M., Lyskov E. Autonomic regulation, physical activity and perceived stress in subjects with musculoskeletal pain: 24-hour ambulatory monitoring. International Journal of Psychophysiology. 2012;86(3):276–282. doi: 10.1016/j.ijpsycho.2012.09.017.
    1. Mostoufi S. M., Afari N., Ahumada S. M., Reis V., Wetherell J. L. Health and distress predictors of heart rate variability in fibromyalgia and other forms of chronic pain. Journal of Psychosomatic Research. 2012;72(1):39–44. doi: 10.1016/j.jpsychores.2011.05.007.
    1. Oliveira L. R., de Melo V. U., Macedo F. N., et al. Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats. Autonomic Neuroscience: Basic and Clinical. 2012;167(1-2):45–49. doi: 10.1016/j.autneu.2011.12.004.
    1. Eze-Nliam C. M., Quartana P. J., Quain A. M., Smith M. T. Nocturnal heart rate variability is lower in temporomandibular disorder patients than in healthy, pain-free individuals. Journal of Orofacial Pain. 2011;25(3):232–239.
    1. Cho D. S., Choi J. B., Kim Y. S., et al. Heart rate variability in assessment of autonomic dysfunction in patients with chronic prostatitis/chronic pelvic pain syndrome. Urology. 2011;78(6):1369–1372. doi: 10.1016/j.urology.2011.07.1379.
    1. Chang L. H., Ma T. C., Tsay S. L., Jong G. P. Relationships between pain intensity and heart rate variability in patients after abdominal surgery: a Pilot Study. Chinese medical journal. 2012;125(11):1964–1969.
    1. Jarrett M., Heitkemper M., Czyzewski D., Zeltzer L., Shulman R. J. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome. The Journal of Pain. 2012;13(5):477–484. doi: 10.1016/j.jpain.2012.02.007.
    1. Sowder E., Gevirtz R., Shapiro W., Ebert C. Restoration of vagal tone: a possible mechanism for functional abdominal pain. Applied Psychophysiology Biofeedback. 2010;35(3):199–206. doi: 10.1007/s10484-010-9128-8.
    1. Meier P. M., Alexander M. E., Sethna N. F., de Jong-de vos van Steenwijk C. C. E., Zurakowski D., Berde C. B. Complex regional pain syndromes in children and adolescents: regional and systemic signs and symptoms and hemodynamic response to tilt table testing. Clinical Journal of Pain. 2006;22(4):399–406. doi: 10.1097/01.ajp.0000192514.50955.d6.
    1. Matsui M., Ito M., Tomoda A., Miike T. Complex regional pain syndrome in childhood: report of three cases. Brain and Development. 2000;22(7):445–448. doi: 10.1016/s0387-7604(00)00174-1.
    1. Masuda M., Tsunoda M., Imai K. Low catechol-O-methyltransferase activity in the brain and blood pressure regulation. Biological and Pharmaceutical Bulletin. 2006;29(2):202–205. doi: 10.1248/bpb.29.202.
    1. Charrua A., Pinto R., Taylor A., et al. Can the adrenergic system be implicated in the pathophysiology of bladder pain syndrome/interstitial cystitis? A clinical and experimental study. Neurourology and Urodynamics. 2013 doi: 10.1002/nau.22542.
    1. Kinoshita J., Takahashi Y., Watabe A. M., Utsunomiya K., Kato F. Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia. Molecular Pain. 2013;9(1, article 59) doi: 10.1186/1744-8069-9-59.
    1. Becker S., Ceko M., Louis-Foster M., et al. Dopamine and pain sensitivity: neither sulpiride nor acute phenylalanine and tyrosine depletion have effects on thermal pain sensations in healthy volunteers. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0080766.e80766
    1. Altier N., Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sciences. 1999;65(22):2269–2287. doi: 10.1016/S0024-3205(99)00298-2.
    1. Ertas M., Sagduyu A., Arac N., Uludag B., Ertekin C. Use of levodopa to relieve pain from painful symmetrical diabetic polyneuropathy. Pain. 1998;75(2-3):257–259. doi: 10.1016/s0304-3959(98)00003-7.
    1. Wood P. B., Schweinhardt P., Jaeger E., et al. Fibromyalgia patients show an abnormal dopamine response to pain. The European Journal of Neuroscience. 2007;25(12):3576–3582. doi: 10.1111/j.1460-9568.2007.05623.x.
    1. Hagelberg N., Forssell H., Aalto S., et al. Altered dopamine D2 receptor binding in atypical facial pain. Pain. 2003;106(1-2):43–48. doi: 10.1016/S0304-3959(03)00275-6.
    1. Miana L., Hugo do Vale Bastos V., Machado S., et al. Changes in alpha band activity associated with application of the compression of fourth ventricular (CV-4) osteopathic procedure: a qEEG pilot study. Journal of Bodywork and Movement Therapies. 2013;17(3):291–296. doi: 10.1016/j.jbmt.2012.10.002.
    1. Cutler M. J., Holland B. S., Stupski B. A., Gamber R. G., Smith M. L. Cranial manipulation can alter sleep latency and sympathetic nerve activity in humans: a pilot study. The Journal of Alternative and Complementary Medicine. 2005;11(1):103–108. doi: 10.1089/acm.2005.11.103.
    1. Fernández-Pérez A. M., Peralta-Ramírez M. I., Pilat A., Villaverde C. Effects of myofascial induction techniques on physiologic and psychologic parameters: a randomized controlled trial. Journal of Alternative and Complementary Medicine. 2008;14(7):807–811. doi: 10.1089/acm.2008.0117.
    1. Nelson K. E., Sergueef N., Glonek T. The effect of an alternative medical procedure upon low-frequency oscillations in cutaneous blood flow velocity. Journal of Manipulative and Physiological Therapeutics. 2006;29(8):626–636. doi: 10.1016/j.jmpt.2006.08.007.
    1. Shi X., Rehrer S., Prajapati P., Stoll S. T., Gamber R. G., Downey H. F. Effect of cranial osteopathic manipulative medicine on cerebral tissue oxygenation. Journal of the American Osteopathic Association. 2011;111(12):660–666.
    1. Hanten W. P., Olson S. L., Hodson J. L., Imler V. L., Knab V. M., Magee J. L. The effectiveness of CV-4 and resting position techniques on subjects with tension-type headaches. Journal of Manual and Manipulative Therapy. 1999;7(2):64–70. doi: 10.1179/106698199790811816.
    1. Sealey J. E. Plasma renin activity and plasma prorenin assays. Clinical Chemistry. 1991;37(10):1811–1819.
    1. Tulppo M. P., Mäkikallio T. H., Seppänen T., Airaksinen J. K. E., Huikuri H. V. Heart rate dynamics during accentuated sympathovagal interaction. The American Journal of Physiology—Heart and Circulatory Physiology. 1998;274(3):H810–H816.
    1. Goldberger J. J., Kim Y.-H., Ahmed M. W., Kadish A. H. Effect of graded increases in parasympathetic tone on heart rate variability. Journal of Cardiovascular Electrophysiology. 1996;7(7):594–602. doi: 10.1111/j.1540-8167.1996.tb00567.x.
    1. Grassi G., Seravalle G., Bolla G., et al. Heart rate as a sympathetic marker during acute adrenergic challenge. Journal of Hypertension. 2008;26(1):70–75. doi: 10.1097/HJH.0b013e3282f112e6.
    1. Kamiya A., Kawada T., Shimizu S., Iwase S., Sugimachi M., Mano T. Slow head-up tilt causes lower activation of muscle sympathetic nerve activity: Loading speed dependence of orthostatic sympathetic activation in humans. The American Journal of Physiology—Heart and Circulatory Physiology. 2009;297(1):H53–H58. doi: 10.1152/ajpheart.00260.2009.
    1. Von Känel R., Mills P. J., Ziegler M. G., Dimsdale J. E. Effect of β2-adrenergic receptor functioning and increased norepinephrine on the hypercoagulable state with mental stress. American Heart Journal. 2002;144(1):68–72. doi: 10.1067/mhj.2002.123146.
    1. Moulson A., Watson T. A preliminary investigation into the relationship between cervical snags and sympathetic nervous system activity in the upper limbs of an asymptomatic population. Manual Therapy. 2006;11(3):214–224. doi: 10.1016/j.math.2006.04.003.
    1. Ng A. V., Callister R., Johnson D. G., Seals D. R. Age and gender influence muscle sympathetic nerve activity at rest in healthy humans. Hypertension. 1993;21(4):498–503. doi: 10.1161/01.HYP.21.4.498.
    1. Mannelli M., Lazzeri C., Ianni L., et al. Dopamine and sympathoadrenal activity in man. Clinical and Experimental Hypertension. 1997;19(1-2):163–179. doi: 10.3109/10641969709080813.
    1. Zouhal H., Jacob C., Delamarche P., Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Medicine. 2008;38(5):401–423. doi: 10.2165/00007256-200838050-00004.
    1. Botcazou M., Jacob C., Gratas-Delamarche A., et al. Sex effect on catecholamine responses to sprint exercise in adolescents and adults. Pediatric Exercise Science. 2007;19(2):132–144.
    1. Wheatley C. M., Snyder E. M., Johnson B. D., Olson T. P. Sex differences in cardiovascular function during submaximal exercise in humans. Springerpulus. 2014;3, article 445 doi: 10.1186/2193-1801-3-445.
    1. Pettit S. E., Marchand I., Graham T. Gender differences in cardiovascular and catecholamine responses to cold-air exposure at rest. Canadian Journal of Applied Physiology. 1999;24(2):131–147. doi: 10.1139/h99-011.
    1. Jones P. P., Spraul M., Matt K. S., Seals D. R., Skinner J. S., Ravussin E. Gender does not influence sympathetic neural reactivity to stress in healthy humans. The American Journal of Physiology—Heart and Circulatory Physiology. 1996;270(1):H350–H357.

Source: PubMed

3
Suscribir