Daily enteral feeding practice on the ICU: attainment of goals and interfering factors

J M Binnekade, R Tepaske, P Bruynzeel, E M H Mathus-Vliegen, R J de Hann, J M Binnekade, R Tepaske, P Bruynzeel, E M H Mathus-Vliegen, R J de Hann

Abstract

Background: The purpose of this study was to evaluate the daily feeding practice of enterally fed patients in an intensive care unit (ICU) and to study the impact of preset factors in reaching predefined optimal nutritional goals.

Methods: The feeding practice of all ICU patients receiving enteral nutrition for at least 48 hours was recorded during a 1-year period. Actual intake was expressed as the percentage of the prescribed volume of formula (a success is defined as 90% or more). Prescribed volume (optimal intake) was guided by protocol but adjusted to individual patient conditions by the intensivist. The potential barriers to the success of feeding were assessed by multivariate analysis.

Results: Four-hundred-and-three eligible patients had a total of 3,526 records of feeding days. The desired intake was successful in 52% (1,842 of 3,526) of feeding days. The percentage of successful feeding days increased from 39% (124 of 316) on day 1 to 51% (112 of 218) on day 5. Average ideal protein intake was 54% (95% confidence interval (CI) 52 to 55), energy intake was 66% (95% CI 65 to 68) and volume 75% (95% CI 74 to 76). Factors impeding successful nutrition were the use of the feeding tube to deliver contrast, the need for prokinetic drugs, a high Therapeutic Intervention Score System category and elective admissions.

Conclusion: The records revealed an unsatisfactory feeding process. A better use of relative successful volume intake, namely increasing the energy and protein density, could enhance the nutritional yield. Factors such as an improper use of tubes and feeding intolerance were related to failure. Meticulous recording of intake and interfering factors helps to uncover inadequacies in ICU feeding practice.

References

    1. Jolliet P, Pichard C, Biolo G, Chiolero R, Grimble G, Leverve X, Nitenberg G, Novak I, Planas M, Preiser JC, et al. Enteral nutrition in intensive care patients: a practical approach. Working Group on Nutrition and Metabolism, ESICM. European Society of Intensive Care Medicine. Intensive Care Med. 1998;24:848–859. doi: 10.1007/s001340050677.
    1. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999;25:157–161. doi: 10.1007/s001340050809.
    1. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29:2264–2270. doi: 10.1097/00003246-200112000-00005.
    1. Minard G, Kudsk KA. Is early feeding beneficial? How early is early? New Horiz. 1994;2:156–163.
    1. Perez J, Dellinger RP. Other supportive therapies in sepsis. Intensive Care Med. 2001;27(Suppl 1):S116–S127.
    1. Jonkers CF, Prins F, Van Kempen A, Tepaske R, Sauerwein HP. Towards implementation of optimum nutrition and better clinical nutrition support. Clin Nutr. 2001;20:361–366. doi: 10.1054/clnu.2001.0470.
    1. Cullen DJ, Civetta JM, Briggs BA, Ferrara LC. Therapeutic intervention scoring system: a method for quantitative comparison of patient care. Crit Care Med. 1974;2:57–60.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829.
    1. Stroud M, Duncan H, Nightingale J. Guidelines for enteral feeding in adult hospital patients. Gut. 2003;52(Suppl 7):vii1–vii12.
    1. Shaw JH, Wildbore M, Wolfe RR. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann Surg. 1987;205:288–294.
    1. Ishibashi N, Plank LD, Sando K, Hill GL. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998;26:1529–1535. doi: 10.1097/00003246-199809000-00020.
    1. Heyland D, Cook DJ, Winder B, Brylowski L, Van deMark H, Guyatt G. Enteral nutrition in the critically ill patient: a prospective survey. Crit Care Med. 1995;23:1055–1060. doi: 10.1097/00003246-199506000-00010.
    1. Adam S, Batson S. A study of problems associated with the delivery of enteral feed in critically ill patients in five ICUs in the UK. Intensive Care Med. 1997;23:261–266. doi: 10.1007/s001340050326.
    1. McClave SA, Sexton LK, Spain DA, Adams JL, Owens NA, Sullins MB, Blandford BS, Snider HL. Enteral tube feeding in the intensive care unit: factors impeding adequate delivery. Crit Care Med. 1999;27:1252–1256. doi: 10.1097/00003246-199907000-00003.
    1. De Jonghe B, Appere-De-Vechi C, Fournier M, Tran B, Merrer J, Melchior JC, Outin H. A prospective survey of nutritional support practices in intensive care unit patients: what is prescribed? What is delivered? Crit Care Med. 2001;29:8–12. doi: 10.1097/00003246-200101000-00002.
    1. De B, Chapman M, Fraser R, Finnis M, De Keulenaer B, Liberalli D, Satanek M. Enteral nutrition in the critically ill: a prospective survey in an Australian intensive care unit. Anaesth Intensive Care. 2001;29:619–622.
    1. Heyland DK, Schroter-Noppe D, Drover JW, Jain M, Keefe L, Dhaliwal R, Day A. Nutrition support in the critical care setting: current practice in canadian ICUs – opportunities for improvement? JPEN J Parenter Enteral Nutr. 2003;27:74–83.
    1. Parker D, Lawton R. Judging the use of clinical protocols by fellow professionals. Soc Sci Med. 2000;51:669–677. doi: 10.1016/S0277-9536(00)00013-7.
    1. Krishnan JA, Parce PB, Martinez A, Diette GB, Brower RG. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124:297–305. doi: 10.1378/chest.124.1.297.
    1. Meredith JW, Ditesheim JA, Zaloga GP. Visceral protein levels in trauma patients are greater with peptide diet than with intact protein diet. J Trauma. 1990;30:825–828.
    1. Ziegler F, Ollivier JM, Cynober L, Masini JP, Coudray-Lucas C, Levy E, Giboudeau J. Efficiency of enteral nitrogen support in surgical patients: small peptides v non-degraded proteins. Gut. 1990;31:1277–1283.
    1. Ritz MA, Fraser R, Tam W, Dent J. Impacts and patterns of disturbed gastrointestinal function in critically ill patients. Am J Gastroenterol. 2000;95:3044–3052. doi: 10.1016/S0002-9270(00)01969-9.
    1. Montejo JC, Grau T, Acosta J, Ruiz-Santana S, Planas M, Garcia-De-Lorenzo A, Mesejo A, Cervera M, Sanchez-Alvarez C, Nunez-Ruiz R, et al. Multicenter, prospective, randomized, single-blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med. 2002;30:796–800. doi: 10.1097/00003246-200204000-00013.
    1. Esparza J, Boivin MA, Hartshorne MF, Levy H. Equal aspiration rates in gastrically and transpylorically fed critically ill patients. Intensive Care Med. 2001;27:660–664. doi: 10.1007/s001340100880.
    1. Heyland DK, Drover JW, MacDonald S, Novak F, Lam M. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med. 2001;29:1495–1501. doi: 10.1097/00003246-200108000-00001.
    1. Montecalvo MA, Steger KA, Farber HW, Smith BF, Dennis RC, Fitzpatrick GF, Pollack SD, Korsberg TZ, Birkett DH, Hirsch EF. Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team. Crit Care Med. 1992;20:1377–1387.
    1. Mallampalli A, McClave SA, Snider HL. Defining tolerance to enteral feeding in the intensive care unit. Clin Nutr. 2000;19:213–215. doi: 10.1054/clnu.2000.0137.
    1. Spain DA, McClave SA, Sexton LK, Adams JL, Blanford BS, Sullins ME, Owens NA, Snider HL. Infusion protocol improves delivery of enteral tube feeding in the critical care unit. JPEN J Parenter Enteral Nutr. 1999;23:288–292.

Source: PubMed

3
Suscribir