Effect of Diquafosol Ophthalmic Solution on Airflow-Induced Ocular Surface Disorder in Diabetic Rats

Atsuyoshi Dota, Asuka Sakamoto, Takashi Nagano, Tadahiro Murakami, Takeshi Matsugi, Atsuyoshi Dota, Asuka Sakamoto, Takashi Nagano, Tadahiro Murakami, Takeshi Matsugi

Abstract

Purpose: To examine the effect of 3% diquafosol ophthalmic solution (DQS) on ocular surface disorders in diabetic model rats maintained in a continuous airflow condition.

Methods: Goto-Kakizaki (GK) rats, a spontaneous model of type 2 diabetes, were exposed to constant airflow for 8 weeks. After the establishment of the animal model in this environment, DQS or saline was instilled six times a day into GK rat eyes for 6 weeks. Schirmer's test was performed before and after 6-week instillations. Corneal fluorescein staining was scored at 2-, 4-, and 6-week instillations. Touch thresholds for the cornea were also determined using a Cochet-Bonnet esthesiometer before and after 6-week instillations.

Results: The mean Schirmer's test score after instillation of DQS was twice higher than that recorded for saline alone. DQS significantly decreased corneal staining scores at 4- and 6-week instillations. No changes in touch thresholds were observed before and after 6-week instillations.

Conclusion: These results suggest that DQS improves corneal epithelial damage by stimulating tear secretion without influencing corneal sensation in diabetic keratopathy. Thus, DQS may have potential for treatment of diabetic patients with dry eye.

Keywords: Goto–Kakizaki rat; corneal epithelial damage; diabetic keratopathy; diquafosol ophthalmic solution; tear volume.

Conflict of interest statement

All authors are employees of Santen Pharmaceutical Co. Ltd. The authors report no other conflicts of interest in this work.

© 2020 Dota et al.

Figures

Figure 1
Figure 1
Study design. Abbreviation: DQS, 3% diquafosol tetrasodium ophthalmic solution.
Figure 2
Figure 2
Effect of DQS on tear fluid secretion in diabetic GK rats exposed to airflow for 8 weeks. GK rats underwent instillation with saline or DQS six times daily for 6 weeks. Each measurement was obtained before and after the instillation period. Each column represents mean ± SE (n = 12 eyes). **p < 0.01 vs GK/saline at the same time point (Student’s t-test). Abbreviations: DQS, 3% diquafosol tetrasodium ophthalmic solution; N.S., not significant; GK, Goto–Kakizaki, SE, standard error.
Figure 3
Figure 3
Effect of DQS on corneal fluorescein staining score in diabetic rats exposed to constant airflow. Male GK rats were maintained with constant airflow while subjected to instilled saline or DQS for 6 weeks. The corneal staining score was determined before instillation and at 2-, 4-, and 6-week instillations. (A) Representative images of the corneal epithelium with fluorescein staining in rats at 6-week instillation. Wistar rat served as control. (B) Time course of corneal fluorescein staining score. Each point represents the mean ± SE (n = 18 eyes). *p < 0.05, **p < 0.01 vs GK/saline (Student’s t-test). ##p < 0.01 vs Wistar (Student’s t-test). Abbreviations: DQS, 3% diquafosol tetrasodium ophthalmic solution; GK, Goto–Kakizaki, SE, standard error

References

    1. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels: Belgium; 2017.
    1. Abdelkader H, Patel DV, McGhee CNJ, et al. New therapeutic approaches in the treatment of diabetic keratopathy: a review. Clin Exp Ophthalmol. 2011;39:259–270. doi:10.1111/j.1442-9071.2010.02435.x
    1. Vieira-Potter VJ, Karamichos D, Lee DJ. Ocular complications of diabetes and therapeutic approaches. Biomed Res Int. 2016;2016:3801570.
    1. Gekka M, Miyata K, Nagai Y, et al. Corneal epithelial barrier function in diabetic patients. Cornea. 2004;23(1):35–37. doi:10.1097/00003226-200401000-00006
    1. Su DH, Wong TY, Wong WL, et al. Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology. 2008;115(6):964–968. doi:10.1016/j.ophtha.2007.08.021
    1. Módis L Jr, Szalai E, Kertesz K, et al. Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. Histol Histopathol. 2010;25(12):1531–1537. doi:10.14670/HH-25.1531
    1. Ljubimov AL. Diabetic complications in the cornea. Vision Res. 2017;139:138–152. doi:10.1016/j.visres.2017.03.002
    1. Shih KC, Lam KS-L, Tong L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes. 2017;7(3):e251. doi:10.1038/nutd.2017.4
    1. Cousen P, Cackett P, Bennett H, et al. Tear production and corneal sensitivity in diabetes. J Diabetes Complications. 2007;21(6):371–373. doi:10.1016/j.jdiacomp.2006.05.008
    1. Manaviat MR, Rashidi M, Afkhami-Ardekani M, et al. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol. 2008;8(1):10. doi:10.1186/1471-2415-8-10
    1. Dogru M, Katakami C, Inoue M. Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology. 2001;108(3):586–592. doi:10.1016/S0161-6420(00)00599-6
    1. Yoon KC, Im SK, Seo MS. Changes of tear film and ocular surface in diabetes mellitus. Korean J Ophthalmol. 2004;18(2):168–174. doi:10.3341/kjo.2004.18.2.168
    1. Zhang X, Zhao L, Deng S, Sun X, Wang N. Dry eye syndrome in patients with diabetes mellitus: prevalence, etiology, and clinical characteristics. J Ophthalmol. 2016;ID8201053.
    1. Jumblatt JE, Jumblatt MM. Regulation of ocular mucin secretion by P2Y2 nucleotide receptors in rabbit and human conjunctiva. Exp Eye Res. 1998;67(3):341–346. doi:10.1006/exer.1998.0520
    1. Hosoya K, Ueda H, Kim KJ, et al. Nucleotide stimulation of Cl– secretion in the pigmented rabbit conjunctiva. J Pharmacol Exp Ther. 1999;291(1):53–59.
    1. Li Y, Kuang K, Yerxa B, et al. Rabbit conjunctival epithelium transports fluid, and P2Y2 receptor agonists stimulate Cl– and fluid secretion. Am J Physiol Cell Physiol. 2001;281:C595–C602.
    1. Murakami T, Fujihara T, Horibe Y, et al. Diquafosol elicits increases in net Cl– transport through P2Y2 receptor stimulation in rabbit conjunctiva. Ophthalmic Res. 2004;36:89–93.
    1. Fujihara T, Murakami T, Nagano T, et al. INS365 suppresses loss of corneal epithelial integrity by secretion of mucin-like glycoprotein in a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 2002;18:363–370. doi:10.1089/10807680260218524
    1. Shichijo Y, Nakamura M. Stimulatory effect of diquafosol tetrasodium on the expression of membrane-binding mucin genes in cultured human corneal epithelial cells. Atarashii Ganka. 2011;28:425–429.
    1. Fujihara T, Murakami T, Fujita H, et al. Improvement of corneal barrier function by the P2Y2 agonist INS365 in a rat dry eye model. Invest Ophthalmol Vis Sci. 2001;42:96–100.
    1. Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo-controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23(8):784–792. doi:10.1097/01.ico.0000133993.14768.a9
    1. Matsumoto Y, Ohashi Y, Watanabe H, et al. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese phase 2 clinical trial. Ophthalmology. 2012;119(10):1954–1960. doi:10.1016/j.ophtha.2012.04.010
    1. Takamura E, Tsubota K, Watanabe H, et al. A randomised, double-masked comparison study of diquafosol versus sodium hyaluronate ophthalmic solutions in dry eye patients. Br J Ophthalmol. 2012;96(10):1310–1315. doi:10.1136/bjophthalmol-2011-301448
    1. Nakamura S, Shibuya M, Nakashima H, et al. D-b-Hydroxybutyrate protects against corneal epithelial disorders in a rat dry eye model with jogging board. Invest Ophthalmol Vis Sci. 2005;46:2379–2387. doi:10.1167/iovs.04-1344
    1. Dota A, Nakamura M. Combined effect of diquafosol tetrasodium and sodium hyaluronate ophthalmic solutions in rat dry eye model. Atarashii Ganka. 2011;28:1477–1481.
    1. Murakami T, Nakamura M. Combined effects of hyaluronan and artificial tear solution in rat dry eye model. Atarashii Ganka. 2004;21:87–90.
    1. Goto Y, Suzuki K, Ono T, et al. Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol. 1988;246:29–31.
    1. Janssen U, Riley SG, Vassiliadou A, et al. Hypertension superimposed on type II diabetes in Goto Kakizaki rats induces progressive nephropathy. Kidney Int. 2003;63:2162–2170. doi:10.1046/j.1523-1755.2003.00007.x
    1. Wakuta M, Morishige N, Chikama T, et al. Delayed wound closure and phenotypic changes in corneal epithelium of the spontaneously diabetic Goto–Kakizaki rat. Invest Ophthalmol Vis Sci. 2007;48(2):590–596. doi:10.1167/iovs.05-1168
    1. Nagai N, Ito Y. Therapeutic effects of sericin on diabetic keratopathy in Otsuka Long-Evans Tokushima fatty rats. World J Diabetes. 2013;4(6):282–289. doi:10.4239/wjd.v4.i6.282
    1. Saito J, Enoki M, Hara M, et al. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea. 2003;22(1):15–18. doi:10.1097/00003226-200301000-00004
    1. Borchman D, Foulks GN, Yappert MC, et al. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens. 2009;1(1):32–37. doi:10.1097/ICL.0b013e318193f4fc
    1. Hori Y, Kageyama T, Sakamoto A, et al. Comparison of short-term effects of diquafosol and rebamipide on mucin 5AC level on the rabbit ocular surface. J Ocul Pharmacol Ther. 2017;33(6):493–497. doi:10.1089/jop.2016.0092

Source: PubMed

3
Suscribir