Molecular features of untreated breast cancer and initial metastatic event inform clinical decision-making and predict outcome: long-term results of ESOPE, a single-arm prospective multicenter study

Céline Callens, Keltouma Driouch, Anaïs Boulai, Zakia Tariq, Aurélie Comte, Frédérique Berger, Lisa Belin, Ivan Bièche, Vincent Servois, Patricia Legoix, Virginie Bernard, Sylvain Baulande, Walid Chemlali, François-Clément Bidard, Virginie Fourchotte, Anne Vincent- Salomon, Etienne Brain, Rosette Lidereau, Thomas Bachelot, Mahasti Saghatchian, Mario Campone, Sylvie Giacchetti, Brigitte Sigal Zafrani, Paul Cottu, Céline Callens, Keltouma Driouch, Anaïs Boulai, Zakia Tariq, Aurélie Comte, Frédérique Berger, Lisa Belin, Ivan Bièche, Vincent Servois, Patricia Legoix, Virginie Bernard, Sylvain Baulande, Walid Chemlali, François-Clément Bidard, Virginie Fourchotte, Anne Vincent- Salomon, Etienne Brain, Rosette Lidereau, Thomas Bachelot, Mahasti Saghatchian, Mario Campone, Sylvie Giacchetti, Brigitte Sigal Zafrani, Paul Cottu

Abstract

Background: Prognosis evaluation of advanced breast cancer and therapeutic strategy are mostly based on clinical features of advanced disease and molecular profiling of the primary tumor. Very few studies have evaluated the impact of metastatic subtyping during the initial metastatic event in a prospective study. The genomic landscape of metastatic breast cancer has mostly been described in very advanced, pretreated disease, limiting the findings transferability to clinical use.

Methods: We developed a multicenter, single-arm, prospective clinical trial in order to address these issues. Between November 2010 and September 2013, 123 eligible patients were included. Patients at the first, untreated metastatic event were eligible. All matched primary tumors and metastatic samples were centrally reviewed for pathological typing. Targeted and whole-exome sequencing was applied to matched pairs of frozen tissue. A multivariate overall survival analysis was performed (median follow-up 64 months).

Results: Per central review in 84 patients (out of 130), we show that luminal A breast tumors are more prone to subtype switching. By combining targeted sequencing of a 91 gene panel (n = 67) and whole-exome sequencing (n = 30), a slight excess of mutations is observed in the metastases. Luminal A breast cancer has the most heterogeneous mutational profile and the highest number of mutational signatures, when comparing primary tumor and the matched metastatic tissue. Tumors with a subtype change have more mutations that are private. The metastasis-specific mutation load is significantly higher in late than in de novo metastases. The most frequently mutated genes were TP53 and PIK3CA. The most frequent metastasis-specific druggable genes were PIK3CA, PTEN, KDR, ALK, CDKN2A, NOTCH4, POLE, SETD2, SF3B1, and TSC2. Long-term outcome is driven by a combination of tumor load and metastasis biology.

Conclusions: Profiling of the first, untreated, metastatic event of breast cancer reveals a profound heterogeneity mostly in luminal A tumors and in late metastases. Based on this profiling, we can derive information relevant to prognosis and therapeutic intervention, which support current guidelines recommending a biopsy at the first metastatic relapse.

Trial registration: The trial was registered at ClinicalTrials.gov ( NCT01956552 ).

Keywords: Breast cancer; Metastasis; Next generation sequencing; Prognosis; Targetable genes; de novo metastases.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Mutational load in breast cancer primary tumors and their metastatic counterparts by whole-exome sequencing. a Average mutation rate in primary tumors (PT) and their matched metastatic tissue (M). b Average mutation rate in primary tumors (PT) and their matched metastatic tissue (M), according to the subtype of the primary tumor. The mutational burden in all paired samples (a) and by molecular subtypes (b) is represented as the number of mutations per megabase of sequence. The violin plots represent the distribution of the data. Asterisks indicate a statistically significant difference among TNBC and luminal B patients (Wilcoxon rank-sum test false discovery rate)
Fig. 2
Fig. 2
Examples of phylogenetic trees of different tumor subtypes, based on mutational signatures. The mutational signatures were generated separately for variants shared between PT and M or private to each sample. The relative contribution of the signature were then annotated to the phylogenetic tree of 12 breast cancers cases of all 4 subtypes (luminal A, luminal B, Her2, and TNBC). HR, homologous recombination; MMR, mismatch-repair deficiency
Fig. 3
Fig. 3
Mutational landscape and mutational load in matched primary tumors and metastases. The respective mutational landscape of primary tumors and matched metastases is shown as captured by targeted sequencing, according to primary tumor subtype and metastatic site. Gray cells indicate a sequencing depth 

Fig. 4

Number and distribution of mutations…

Fig. 4

Number and distribution of mutations in driver genes as captured by whole-exome sequencing.…

Fig. 4
Number and distribution of mutations in driver genes as captured by whole-exome sequencing. a Number of shared (light gray) and private (dark gray) mutations in driver genes. *p < 0.01. b Number of private mutations in driver genes, in the primary tumor (light gray), or in metastases (dark gray). *p < 0.01. c Fraction of overall or driver mutations detected in both primary tumors and metastases. *p<0.01 Lines correspond to the mean

Fig. 5

Overall survival. Numbers of patients…

Fig. 5

Overall survival. Numbers of patients at risk are indicated beneath the curves. a…

Fig. 5
Overall survival. Numbers of patients at risk are indicated beneath the curves. a Overall survival according to primary tumor IHC subtype. b Overall survival according to metastasis subtype. c Overall survival according to LAMA2 mutational status

Fig. 6

Mutational profile of de novo…

Fig. 6

Mutational profile of de novo versus late metastases. a Landscape of private versus…

Fig. 6
Mutational profile of de novo versus late metastases. a Landscape of private versus shared mutations in primary tumors and their matched metastatic tissue, according to metastasis onset pattern. b Pie plot showing the proportion of private versus shared mutations in primary tumors and their matched metastatic tissue. c Box-plot showing the mutation number in late versus de novo metastases. White box: de novo metastases; black box: late metastases. *p < 0.01. d Box-plot showing the median of shared and private driver mutations identified in late and de novo breast cancers. Dark boxes: shared mutations; gray box: private mutations; ***p < 0.0001
Fig. 4
Fig. 4
Number and distribution of mutations in driver genes as captured by whole-exome sequencing. a Number of shared (light gray) and private (dark gray) mutations in driver genes. *p < 0.01. b Number of private mutations in driver genes, in the primary tumor (light gray), or in metastases (dark gray). *p < 0.01. c Fraction of overall or driver mutations detected in both primary tumors and metastases. *p<0.01 Lines correspond to the mean
Fig. 5
Fig. 5
Overall survival. Numbers of patients at risk are indicated beneath the curves. a Overall survival according to primary tumor IHC subtype. b Overall survival according to metastasis subtype. c Overall survival according to LAMA2 mutational status
Fig. 6
Fig. 6
Mutational profile of de novo versus late metastases. a Landscape of private versus shared mutations in primary tumors and their matched metastatic tissue, according to metastasis onset pattern. b Pie plot showing the proportion of private versus shared mutations in primary tumors and their matched metastatic tissue. c Box-plot showing the mutation number in late versus de novo metastases. White box: de novo metastases; black box: late metastases. *p < 0.01. d Box-plot showing the median of shared and private driver mutations identified in late and de novo breast cancers. Dark boxes: shared mutations; gray box: private mutations; ***p < 0.0001

References

    1. Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P, et al. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann Oncol. 30:1541–57.
    1. Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, André F, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5)†. Ann Oncol. 2020;31(12):1623–49.
    1. Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology guideline. J Clin Oncol. 2016;34:3069–3103. doi: 10.1200/JCO.2016.67.1487.
    1. Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2015;33:2695–2704. doi: 10.1200/JCO.2015.61.1459.
    1. Schrijver WAME, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. JNCI J Natl Cancer Inst. 2018;110:568–580. doi: 10.1093/jnci/djx273.
    1. Pectasides D, Gaglia A, Arapantoni-Dadioti P, Bobota A, Valavanis C, Kostopoulou V, et al. HER-2/neu status of primary breast cancer and corresponding metastatic sites in patients with advanced breast cancer treated with trastuzumab-based therapy. Anticancer Res. 2006;26:647–653.
    1. Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS) Breast Cancer Res. 2010;12:R92. doi: 10.1186/bcr2771.
    1. Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20:1499–1504. doi: 10.1093/annonc/mdp028.
    1. de Dueñas EM, Hernández AL, Zotano ÁG, Carrión RMP, López-Muñiz JIC, Novoa SA, et al. Prospective evaluation of the conversion rate in the receptor status between primary breast cancer and metastasis: results from the GEICAM 2009-03 ConvertHER study. Breast Cancer Res Treat. 2014;143:507–515. doi: 10.1007/s10549-013-2825-2.
    1. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–564. doi: 10.1038/s41586-019-1056-z.
    1. Hu Z, Li Z, Ma Z, Curtis C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet. 2020; Available from: . [cited 2020 Jun 28]
    1. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21:751–759. doi: 10.1038/nm.3886.
    1. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34:427–438.e6. doi: 10.1016/j.ccell.2018.08.008.
    1. Brady SW, McQuerry JA, Qiao Y, Piccolo SR, Shrestha G, Jenkins DF, et al. Combating subclonal evolution of resistant cancer phenotypes. Nat Commun. 2017;8:1231. doi: 10.1038/s41467-017-01174-3.
    1. Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria J-C, et al. Mutational profile of metastatic breast cancers: a retrospective analysis. Mardis ER, editor. Plos Med. 2016;13:e1002201. doi: 10.1371/journal.pmed.1002201.
    1. Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20:88. doi: 10.1186/s13058-018-1007-x.
    1. Ng CKY, Bidard F-C, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, et al. Genetic heterogeneity in therapy-naïve synchronous primary breast cancers and their metastases. Clin Cancer Res. 2017;23:4402–4415. doi: 10.1158/1078-0432.CCR-16-3115.
    1. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31. doi: 10.1186/s13059-016-0893-4.
    1. Alexandrov LB, Nik-Zainal S, Wedge DC, JR ASA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477.
    1. Hilton JF, Amir E, Hopkins S, Nabavi M, DiPrimio G, Sheikh A, et al. Acquisition of metastatic tissue from patients with bone metastases from breast cancer. Breast Cancer Res Treat. 2011;129:761–765. doi: 10.1007/s10549-010-1264-6.
    1. Driouch K. Exome sequencing of paired primary tumor and metastatic breast cancer - EGA European Genome-Phenome Archive. Available from: . [cited 2021 Jan 15]
    1. Callens C. Molecular features of breast cancer first and untreated metastatic event. Available from: . [cited 2021 Jan 15]
    1. Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303. doi: 10.1038/nature23306.
    1. Angus L, Beije N, Jager A, Martens JWM, Sleijfer S. ESR1 mutations: moving towards guiding treatment decision-making in metastatic breast cancer patients. Cancer Treat Rev. 2017;52:33–40. doi: 10.1016/j.ctrv.2016.11.001.
    1. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088.
    1. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/-12-0095.
    1. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. doi: 10.1038/nature12912.
    1. Le Tourneau C, Kamal M, Tsimberidou A-M, Bedard P, Pierron G, Callens C, et al. Treatment algorithms based on tumor molecular profiling: the essence of precision medicine trials. J Natl Cancer Inst. 2015;108(4):djv362.
    1. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.
    1. Lluch A, González-Angulo AM, Casadevall D, Eterovic AK, Martínez de Dueñas E, Zheng X, et al. Dynamic clonal remodelling in breast cancer metastases is associated with subtype conversion. Eur J Cancer. 2019;120:54–64. doi: 10.1016/j.ejca.2019.07.003.
    1. Cejalvo JM, Martínez de Dueñas E, Galván P, García-Recio S, Burgués Gasión O, Paré L, et al. Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res. 2017;77:2213–2221. doi: 10.1158/0008-5472.CAN-16-2717.
    1. Tobin NP, Harrell JC, Lövrot J, Egyhazi Brage S, Frostvik Stolt M, Carlsson L, et al. Molecular subtype and tumor characteristics of breast cancer metastases as assessed by gene expression significantly influence patient post-relapse survival. Ann Oncol. 2015;26:81–88. doi: 10.1093/annonc/mdu498.
    1. Nishimura R, Osako T, Okumura Y, Tashima R, Toyozumi Y, Arima N. Changes in the ER, PgR, HER2, p53 and Ki-67 biological markers between primary and recurrent breast cancer: discordance rates and prognosis. World J Surg Oncol. 2011;9:131. doi: 10.1186/1477-7819-9-131.
    1. Montagna E, Bagnardi V, Rotmensz N, Viale G, Renne G, Cancello G, et al. Breast cancer subtypes and outcome after local and regional relapse. Ann Oncol. 2012;23:324–331. doi: 10.1093/annonc/mdr129.
    1. Falck A-K, Arten FM, Bendahl P-O, Rydén L. St Gallen molecular subtypes in primary breast cancer and matched lymph node metastases-aspects on distribution and prognosis for patients with luminal A tumours: results from a prospective randomised trial. BMC Cancer. 2013;13:558. doi: 10.1186/1471-2407-13-558.
    1. Ibrahim T, Farolfi A, Scarpi E, Mercatali L, Medri L, Ricci M, et al. Hormonal receptor, human epidermal growth factor receptor-2, and Ki67 discordance between primary breast cancer and paired metastases: clinical impact. Oncology. 2013;84:150–157. doi: 10.1159/000345795.
    1. Amir E, Clemons M, Purdie CA, Miller N, Quinlan P, Geddie W, et al. Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat Rev. 2012;38:708–714. doi: 10.1016/j.ctrv.2011.11.006.
    1. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–583. doi: 10.1038/nrclinonc.2015.117.
    1. Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ, et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res. 2016;22:1130–1137. doi: 10.1158/1078-0432.CCR-15-1534.
    1. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–1445. doi: 10.1038/ng.2822.
    1. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.
    1. Schrijver WAME, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, et al. Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res. 2018;78:3112–3121. doi: 10.1158/0008-5472.CAN-17-2310.
    1. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52:198–207. doi: 10.1038/s41588-019-0554-0.
    1. Wang F, Zhao Q, Wang Y-N, Jin Y, He M-M, Liu Z-X, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol. 2019;5:1504–1506. doi: 10.1001/jamaoncol.2019.2963.
    1. Deluche E, Antoine A, Bachelot T, Lardy-Cleaud A, Dieras V, Brain E, et al. Contemporary outcomes of metastatic breast cancer among 22,000 women from the multicentre ESME cohort 2008–2016. Eur J Cancer. 2020;129:60–70. doi: 10.1016/j.ejca.2020.01.016.
    1. Prat A, Cheang MCU, Galván P, Nuciforo P, Paré L, Adamo B, et al. Prognostic value of intrinsic subtypes in hormone receptor-positive metastatic breast cancer treated with letrozole with or without lapatinib. JAMA Oncol. 2016;2:1287–1294. doi: 10.1001/jamaoncol.2016.0922.
    1. Bidard F-C, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–414. doi: 10.1016/S1470-2045(14)70069-5.
    1. Mefford D, Mefford J. Stromal genes add prognostic information to proliferation and histoclinical markers: a basis for the next generation of breast cancer gene signatures. PLoS One. 2012;7:e37646. doi: 10.1371/journal.pone.0037646.
    1. Le Tourneau C, Delord J-P, Gonçalves A, Gavoille C, Dubot C, Isambert N, et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015;16:1324–1334. doi: 10.1016/S1470-2045(15)00188-6.
    1. Massard C, Michiels S, Ferté C, Le Deley M-C, Lacroix L, Hollebecque A, et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 2017;7:586–595. doi: 10.1158/-16-1396.
    1. Cortés J, Im S-A, Holgado E, Perez-Garcia JM, Schmid P, Chavez-MacGregor M. The next era of treatment for hormone receptor-positive, HER2-negative advanced breast cancer: triplet combination-based endocrine therapies. Cancer Treat Rev. 2017;61:53–60. doi: 10.1016/j.ctrv.2017.09.011.
    1. Lindstrom LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30:2601–2608. doi: 10.1200/JCO.2011.37.2482.

Source: PubMed

3
Suscribir