Exergaming in a Moving Virtual World to Train Vestibular Functions and Gait; a Proof-of-Concept-Study With Older Adults

Jaap Swanenburg, Karin Wild, Dominik Straumann, Eling D de Bruin, Jaap Swanenburg, Karin Wild, Dominik Straumann, Eling D de Bruin

Abstract

Background: The use of Exergames designed to improve physical and cognitive functioning is relatively new in rehabilitation. Exergaming allows the training of skills, the handling of tools, and procedures; however, often, the potential of these aspects are not assessed before they are adopted in clinical settings. This study aimed at exploring the effects of exergaming on vestibular functions and gait in healthy community dwelling older adults using a proof-of-concept study design registered under ClinicalTrials.gov NCT03160352. Methods: A pre-test-post-test one-group study design comprising 10 older adults (mean age of 73.5 ± 7.6 years, four males) investigated the feasibility of eight exergaming training sessions (for 160 min) and the effects on dynamic visual acuity (DVA), functional gait assessment (FGA), and extended timed get-up-and-go (ETGUG). The simulator sickness questionnaire (SSQ) and the game scores were evaluated for the feasibility of the intervention. Wilcoxon test and Cohen's d (d) were chosen to test for differences and for effect size estimation. Results: Exergaming led to a significantly improved DVA (z = -2.50, p = 0.01, d = 1.35) with improvements in 9 out of 10 participants. In addition, the FGA significantly improved with a large effect size (z = -2.25, p = 0.02, d = 1.17). Specifically, component tasks such as walking with horizontal head turns (p = 0.03), gait with a narrow base of support (p = 0.03), ambulating backward (p = 0.05) significantly improved. The ETGUG component task Gait initiation significantly improved (p = 0.04). No change was found in gait speed and SSQ. The game scores of the participants improved continuously during the course of the intervention for every game. Discussion: This proof-of-concept study suggests that the use of exergaming that requires active stepping movements and that contains moving game projection is feasible and facilitates gaze stability during head movements in healthy community dwelling older adults. Aspects of functional gait and gait initiation also improved. Future research aimed at testing this exergaming intervention in patients suffering from vestibular impairments is warranted.

Keywords: dynamic visual acuity; exergaming; head turns; older adult; vestibular loss.

Figures

FIGURE 1
FIGURE 1
The Senso exercise system with moving beamer (arrows show motion extent of game projection).
FIGURE 2
FIGURE 2
The game Simple trains focussed attention – the ability to concentrate on certain stimuli and react as quickly as possible to them.
FIGURE 3
FIGURE 3
The game Targets which helps training reaction time (speed and accuracy).
FIGURE 4
FIGURE 4
Flexi supports training of shifting attention.
FIGURE 5
FIGURE 5
The Snake game which supports training of spatial orientation in a 2D virtual environment.
FIGURE 6
FIGURE 6
Baseline and post-intervention VA-Loss results of each participant.

References

    1. Agrawal Y., Carey J. P., Della Santina C. C., Schubert M. C., Minor L. B. (2009). Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch. Intern. Med. 169 938–944. 10.1001/archinternmed.2009.66
    1. Agrawal Y., Ward B. K., Minor L. B. (2013). Vestibular dysfunction: prevalence, impact and need for targeted treatment. J. Vestib. Res. 23 113–117.
    1. Arshad Q., Seemungal B. M. (2016). Age-related vestibular loss: current understanding and future research directions. Front. Neurol. 7:231 10.3389/fneur.2016.00231
    1. Bergeron M., Lortie C. L., Guitton M. J. (2015). Use of virtual reality tools for vestibular disorders rehabilitation: a comprehensive analysis. Adv. Med. 2015:916735. 10.1155/2015/916735
    1. Calder J. H., Jacobson G. P. (2000). Acquired bilateral peripheral vestibular system impairment: rehabilitative options and potential outcomes. J. Am. Acad. Audiol. 11 514–521.
    1. Cromwell R., Wellmon R. (2001). Sagittal plane head stabilization during level walking and ambulation on stairs. Physiother. Res. Int. 6 179–192. 10.1002/pri.226
    1. Deveze A., Bernard-Demanze L., Xavier F., Lavieille J. P., Elziere M. (2014). Vestibular compensation and vestibular rehabilitation. current concepts and new trends. Neurophysiol. Clin. 44 49–57. 10.1016/j.neucli.2013.10.138
    1. Erren-Wolters C. V., van Dijk H., de Kort A. C., Ijzerman M. J., Jannink M. J. (2007). Virtual reality for mobility devices: training applications and clinical results: a review. Int. J. Rehabil. Res. 30 91–96. 10.1097/MRR.0b013e32813a2e00
    1. Gupta K. K., Attri J. P., Singh A., Kaur H., Kaur G. (2016). Basic concepts for sample size calculation: critical step for any clinical trials! Saudi J. Anaesth. 10 328–331. 10.4103/1658-354X.174918
    1. Han B. I., Song H. S., Kim J. S. (2011). Vestibular rehabilitation therapy: review of indications, mechanisms, and key exercises. J. Clin. Neurol. 7 184–196. 10.3988/jcn.2011.7.4.184
    1. Henriksson M., Henriksson J., Bergenius J. (2011). Gait initiation characteristics in elderly patients with unilateral vestibular impairment. Gait Posture 33 661–667. 10.1016/j.gaitpost.2011.02.018
    1. Herdman S. J., Hall C. D., Schubert M. C., Das V. E., Tusa R. J. (2007). Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 133 383–389. 10.1001/archotol.133.4.383
    1. Herdman S. J., Schubert M. C., Das V. E., Tusa R. J. (2003). Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 129 819–824. 10.1001/archotol.129.8.819
    1. Herdman S. J., Tusa R. J., Blatt P., Suzuki A., Venuto P. J., Roberts D. (1998). Computerized dynamic visual acuity test in the assessment of vestibular deficits. Am. J. Otol. 19 790–796.
    1. Hsu S. Y., Fang T. Y., Yeh S. C., Su M. C., Wang P. C., Wang V. Y. (2017). Three-dimensional, virtual reality vestibular rehabilitation for chronic imbalance problem caused by Meniere’s disease: a pilot study. Disabil. Rehabil. 39 1601–1606. 10.1080/09638288.2016.1203027
    1. Ilg W., Golla H., Thier P., Giese M. A. (2007). Specific influences of cerebellar dysfunctions on gait. Brain 130 786–798. 10.1093/brain/awl376
    1. Justice J., Miller J. D., Newman J. C., Hashmi S. K., Halter J., Austad S. N., et al. (2016). Frameworks for proof-of-concept clinical trials of interventions that target fundamental aging processes. J. Gerontol. A Biol. Sci. Med. Sci. 71 1415–1423. 10.1093/gerona/glw126
    1. Kennedy R. S., Lane N. E., Berbaum K. S., Lilienthal M. G. (1993). Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3 203–220. 10.1207/s15327108ijap0303_3
    1. Keshavarz B., Hecht H. (2011). Validating an efficient method to quantify motion sickness. Hum. Factors 53 415–426. 10.1177/0018720811403736
    1. Klatt B. N., Carender W. J., Lin C. C., Alsubaie S. F., Kinnaird C. R., Sienko K. H., et al. (2015). A conceptual framework for the progression of balance exercises in persons with balance and vestibular disorders. Phys. Med. Rehabil. Int. 2:1044.
    1. Lacour M., Bernard-Demanze L. (2015). Interaction between vestibular compensation mechanisms and vestibular rehabilitation therapy: 10 recommendations for optimal functional recovery. Front. Neurol. 5:285. 10.3389/fneur.2014.00285
    1. Li C., Beaumont J. L., Rine R. M., Slotkin J., Schubert M. C. (2014). Normative scores for the NIH toolbox dynamic visual acuity test from 3 to 85 years. Front. Neurol. 5:223. 10.3389/fneur.2014.00223
    1. Long G. M., Crambert R. F. (1990). The nature and basis of age-related changes in dynamic visual acuity. Psychol. Aging 5 138–143. 10.1037/0882-7974.5.1.138
    1. Meldrum D., Herdman S., Vance R., Murray D., Malone K., Duffy D., et al. (2015). Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial. Arch. Phys. Med. Rehabil. 96 1319.e1–1328.e1. 10.1016/j.apmr.2015.02.032
    1. Micarelli A., Viziano A., Augimeri I., Micarelli D., Alessandrini M. (2017). Three-dimensional head-mounted gaming task procedure maximizes effects of vestibular rehabilitation in unilateral vestibular hypofunction: a randomized controlled pilot trial. Int. J. Rehabil. Res. 40 325–332. 10.1097/MRR.0000000000000244
    1. Muinos M., Ballesteros S. (2015). Sports can protect dynamic visual acuity from aging: a study with young and older judo and karate martial arts athletes. Atten. Percept. Psychophys. 77 2061–2073. 10.3758/s13414-015-0901-x
    1. Perring S., Summers T. (2007). Laboratory-free measurement of gait rhythmicity in the assessment of the degree of impairment and the effectiveness of rehabilitation in patients with vertigo resulting from vestibular hypofunction. Physiol. Meas. 28 697–705. 10.1088/0967-3334/28/6/008
    1. Petersen J. A., Straumann D., Weber K. P. (2013). Clinical diagnosis of bilateral vestibular loss: three simple bedside tests. Ther. Adv. Neurol. Disord. 6 41–45. 10.1177/1756285612465920
    1. Pichierri G., Coppe A., Lorenzetti S., Murer K., de Bruin E. D. (2012). The effect of a cognitive-motor intervention on voluntary step execution under single and dual task conditions in older adults: a randomized controlled pilot study. Clin. Interv. Aging 7 175–184. 10.2147/CIA.S32558
    1. Polcyn A. F., Lipsitz L. A., Kerrigan D. C., Collins J. J. (1998). Age-related changes in the initiation of gait: degradation of central mechanisms for momentum generation. Arch. Phys. Med. Rehabil. 79 1582–1589. 10.1016/S0003-9993(98)90425-7
    1. Riska K. M., Hall C. D. (2016). Reliability and normative data for the dynamic visual acuity test for vestibular screening. Otol. Neurotol. 37 545–552. 10.1097/MAO.0000000000001014
    1. Saposnik G., Mamdani M., Bayley M., Thorpe K. E., Hall J., Cohen L. G., et al. (2010a). Effectiveness of virtual reality exercises in STroke rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int. J. Stroke 5 47–51. 10.1111/j.1747-4949.2009.00404.x
    1. Saposnik G., Teasell R., Mamdani M., Hall J., McIlroy W., Cheung D. (2010b). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41 1477–1484. 10.1161/STROKEAHA.110.584979
    1. Sasaki O., Asawa S., Katsuno S., Usami S., Taguchi K. (2001). Gait initiation in bilateral vestibular loss. Auris Nasus Larynx 28 295–299. 10.1016/S0385-8146(01)00094-3
    1. Schattin A., Arner R., Gennaro F., de Bruin E. D. (2016). Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: a randomized-controlled study. Front. Aging Neurosci. 8:278. 10.3389/fnagi.2016.00278
    1. Schmidheiny A., Swanenburg J., Straumann D., de Bruin E. D., Knols R. H. (2015). Discriminant validity and test re-test reproducibility of a gait assessment in patients with vestibular dysfunction. BMC Ear Nose Throat Disord. 15:6. 10.1186/s12901-015-0019-8
    1. Schniepp R., Wuehr M., Neuhaeusser M., Kamenova M., Dimitriadis K., Klopstock T., et al. (2012). Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov. Disord. 27 125–131. 10.1002/mds.23978
    1. Schubert M. C., Migliaccio A. A., Della Santina C. C. (2006). Dynamic visual acuity during passive head thrusts in canal planes. J. Assoc. Res. Otolaryngol. 7 329–338. 10.1007/s10162-006-0047-6
    1. Stanmore E., Stubbs B., Vancampfort D., de Bruin E. D., Firth J. (2017). The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 78 34–43. 10.1016/j.neubiorev.2017.04.011
    1. Swanenburg J., Babler E., Adelsberger R., Straumann D., de Bruin E. D. (2017a). Patients with chronic peripheral vestibular hypofunction compared to healthy subjects exhibit differences in gaze and gait behaviour when walking on stairs and ramps. PLoS One 12:e0189037. 10.1371/journal.pone.0189037
    1. Swanenburg J., de Bruin E. D., Uebelhart D., Mulder T. (2009). Compromising postural balance in the elderly. Gerontology 55 353–360. 10.1159/000212757
    1. Swanenburg J., Hegemann S. C., Zurbrugg A., Palla A., de Bruin E. D. (2014). Reliability and validity of the extended timed-get-up-and-go test in patients with bilateral vestibular loss. NeuroRehabilitation 34 799–807. 10.3233/NRE-141083
    1. Swanenburg J., Zurbrugg A., Straumann D., Hegemann S. C. A., Palla A., de Bruin E. D. (2017b). A pilot study investigating the association between chronic bilateral vestibulopathy and components of a clinical functional assessment tool. Physiother. Theory Pract. 33 454–461. 10.1080/09593985.2017.1323362
    1. Thabane L., Ma J., Chu R., Cheng J., Ismaila A., Rios L. P., et al. (2010). A tutorial on pilot studies: the what, why and how. BMC Med. Res. Methodol. 10:1. 10.1186/1471-2288-10-1
    1. Tjernstrom F., Zur O., Jahn K. (2016). Current concepts and future approaches to vestibular rehabilitation. J. Neurol. 263(Suppl. 1), S65–S70. 10.1007/s00415-015-7914-1
    1. Vital D., Hegemann S. C., Straumann D., Bergamin O., Bockisch C. J., Angehrn D., et al. (2010). A new dynamic visual acuity test to assess peripheral vestibular function. Arch. Otolaryngol. Head Neck Surg. 136 686–691. 10.1001/archoto.2010.99
    1. Walker M. L., Austin A. G., Banke G. M., Foxx S. R., Gaetano L., Gardner L. A., et al. (2007). Reference group data for the functional gait assessment. Phys. Ther. 87 1468–1477. 10.2522/ptj.20060344
    1. Wettstein V. G., Weber K. P., Bockisch C. J., Hegemann S. C. (2016). Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy1. J. Vestib. Res. 26 395–402. 10.3233/VES-160591
    1. Whitney S. L., Alghwiri A. A., Alghadir A. (2016). An overview of vestibular rehabilitation. Handb. Clin. Neurol. 137 187–205. 10.1016/B978-0-444-63437-5.00013-3
    1. Witherspoon L. (2013). Exergaming. Indianapolis, IN: American College of Sports Medicine.
    1. Wrisley D. M., Marchetti G. F., Kuharsky D. K., Whitney S. L. (2004). Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. 84 906–918.
    1. Yiou E., Caderby T., Delafontaine A., Fourcade P., Honeine J. L. (2017). Balance control during gait initiation: state-of-the-art and research perspectives. World J. Orthop. 8 815–828. 10.5312/wjo.v8.i11.815

Source: PubMed

3
Suscribir